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ABSTRACT 
A method is proposed for determining the required number of trials in crop variety testing. 
The main focus is on estimating the correct ranking of the varieties. Correlation between 
observed and correct ranks, as a function of the number of trials, can be studied by 
simulation. Similarly, the effect of the number of trials on the expected genetic advance under 
selection can be explored. The result from such simulations can be used as a basis for 
selecting the number of trials. Swedish one-year and multi-year series in spring barley and 
winter wheat are used as examples. 

Key Words: crop variety trials; response to selection; sample size calculation; value for cultivation 
and use; variance components. 

 
 

INTRODUCTION 

In crop science, the following question is recurrent: How many trials are needed? The present 
article investigates this problem. Specifically, it is investigated how many trials are needed in series of 
Swedish spring barley and winter wheat variety trials. With a series of experiments, we mean a group 
of identical experiments, which will be analyzed together. It will be assumed that varieties are 
compared with regard to yield, but generally any continuous response variable can be considered. 

One common approach for selecting the sample size is to choose the size such that interesting 
confidence intervals become as small as desired. In comparative experiments, differences between 
treatments are the main interest, which means that this approach would focus on confidence intervals 
for differences between treatment means. Equivalently, one could require that the least significant 
difference should be smaller than some specified limit. Forkman, Amiri and von Rosen (2012) used 
this approach for Swedish series of spring barley and winter wheat. 

Another common approach for selecting the sample size is to choose the size such that a specified 
minimum power is reached. The power is the probability of rejecting the null hypothesis when the 
null hypothesis is false. Here, the null hypothesis postulates no differences between treatments or, in a 
simpler version, no difference between two treatments. The power is an increasing function of the true 
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difference between these treatments. Consequently, the required sample size depends on the true 
difference between the treatments, which is not known. In practice, the researcher must specify a 
hypothetical true difference in order to compute the required number of trials. In clinical trials, this is 
“the clinically relevant difference” or “the difference one would not like to miss” (Senn 2002, p. 170), 
which is an applicable definition also in crop variety testing. Kupper and Hafner (1989) showed that 
this statistical power approach is more reliable than the confidence interval approach. 

However, the main objective of crop variety testing is perhaps not to test hypotheses about 
treatment differences. Rather, the aim is to identify which varieties are best and which ones are less 
good. The varieties are ranked, i.e., the variety that produced the highest yield obtains rank 1, the 
variety that produced the second highest yield obtains rank 2, and so on. Researchers are often more 
interested in the observed ranking of the varieties than in which varieties differ significantly. The 
present article proposes a method to determine the number of trials, so that the ranking of the 
varieties become reliable with high probability. 

The correct ranking of the varieties is the ranking that would have been obtained in a series with 
infinitely many trials. In practice, only a smaller number of trials can be performed. As a result, the 
ranking obtained in the series will usually not be completely correct. However, the more trials the 
series include, the better the ranking tends to be. In other words, when the number of trials is 
increased, observed ranks tend to correlate better with correct ranks. 

Theoretically, the relationship between rank correlation and number of trials is not easily 
explored. The distribution of the rank correlation coefficient is complicated. For example, it has been 
shown that no tractable formula exists for the variance of the rank correlation coefficient when data is 
normally distributed (Kendall and Gibbons 1990, p. 170). It is much easier to study the rank 
correlation through computer simulation. 

When correlation between correct ranks and simulated observed ranks is computed for series 
with � trials, it is found that median rank correlation increases with �. At the same time, variation in 
rank correlation decreases. In series with few trials, rank correlation might become high or low. By 
making many trials, the risk of a low rank correlation is reduced. The results section reports these 
findings. 

Although this article is mainly focused on rank correlation, expected genetic advance under 
selection is also considered. Assuming the top varieties are selected, the expected genetic advance 
under selection can be defined as the difference between the mean of the selected varieties and the 
mean over all varieties (Galwey 2006). The expected genetic advance under selection increases with 
the number of trials. The Results section illustrates how this relationship can be explored by 
simulation. The outcomes can be used to determine the required number of trials. 

The expected genetic advance under selection is a commonly used criterion in plant breeding. A 
much investigated question in plant breeding programs is how to define the rules for selecting 
genotypes in a multi-stage selection procedure. This question has often been investigated by 
simulation, and several software packages are available for determining designs for multi-stage 
breeding trials: the PLABSIM software package (Frisch, Bohn and Melchinger 2000), the PLABSOFT 
software package (Maurer, Melchinger and Frisch 2008), the MBP software package (Gordillo and 
Geiger 2008), and the selectiongain R package (Mi et al. 2014). Using these packages, genetic 
parameters and breeding budget can be considered in addition to design parameters. The software 
package SELSYS (Robinson 1984), was developed for official U.K. cereal variety testing. This package 
uses simulation and is intended for design of multi-stage selection series with several years and 
locations. The SELSYS program was written in FORTRAN, which is nowadays less used. Kleinknecht 
et al. (2016) provided a new and partly extended implementation of the SELSYS approach using the 
SAS System.  

The present article shows how simulations can be carried out using the open source software R, 
when the focus is rank correlation or expected genetic advance under selection. One-year series and 
multi-year series are considered.  

MATERIALS AND METHODS 

STATISTICAL MODELS 

In Sweden, during the five-year period 2011–2015, altogether 126 variety trials were 
performed in spring barley and 96 in winter wheat. Tables 1 and 2 detail the number of trials 
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per year in these crops. These tables also include the number of varieties per trial. Some 
winter wheat trials with severe damage due to winter weather conditions were not included 
in Table 2. In Swedish variety testing, such trials with low survival rates are not included in 
analyses of series. 
 
Table 1. Number of Swedish variety trials in spring barley and number of varieties per trial. 

Year Number of trials Number of varieties 

2015 26 33 

2014 26 29 

2013 26 12 

2012 23 11 

2011 25 23 

In 2015, two of the trials included 16 varieties and one of the trials 15 varieties; in 2014, three of the trials included 
17 varieties; and in 2013, one of the trials included 11 varieties. 

 

Table 2. Number of Swedish variety trials in winter wheat and number of varieties per trial. 

Harvest year Number of trials Number of varieties 

2015 23 29 

2014 24 37 

2013 14 29 

2012 18 32 

2011 17 31 

In 2012, one of the trials included 31 varieties, two of the trials included 30 varieties and one of the trials included 
27 varieties; and in 2011, five of the trials included 30 varieties. 

For each crop and year, the following linear random-effects model was fitted: 
 ��� = � + �� + 	� + 
�� , (1) 

   
where ��� is the yield of the �th variety in the th trial, � is the expected mean yield, �� is a 

random effect of the th trial, 	� is a random effect of the �th variety, and 
�� is a random 

residual error. In this model, ��~��0, ����, 	�~��0, ���� and 
��~��0, ����, and these terms are 

independent. 
Multi-year analyses were performed, for the two crops separately, using the model 
 ���� = � + �� + ��� + 	� + ��	��� + 
���, (2) 

   
where ���� is the yield of the �th variety in the �th trial of the th year, � is the expected mean 

yield, ��� is a random effect of the �th trial of the th year, 	� is a random effect of the �th 

variety, ��	��� is a random effect of variety-by-year interaction, and 
��� is a random residual 

error. In this model,	��~��0, ����, ���~��0, ����, 	�~��0, ����, ��	���~��0, ���� � and 


��~��0, ����, and these terms are independent. 

The observations, ��� in (1) and ���� in (2), were least-squares means obtained in separate 

analyses of the trials. Thus, unweighted two-stage analyses (Möhring and Piepho, 2009) were 
applied. In the first stage, each experiment was analyzed using a linear mixed-effects model 
with fixed effects of varieties and random effects of replicates and incomplete blocks. The 
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trials comprised four replicates. However, two of the replicates were treated against 
fungicide, primarily as protection against powdery mildew. For the present study, these 
replicates were not included in the analysis. Thus, results refer to yield of spring barley and 
winter wheat without protection against fungicide. Models were fitted using the restricted 
likelihood method (REML) and the mixed procedure of the SAS System (SAS Institute, 2008). 

SIMULATION OF ONE-YEAR SERIES 

In simulations of one-year data, parameter values were chosen based on the estimates 

(see the Results section) from the fits of Model (1). Parameters � = 7400, ��� = 68 000, ��� = 

130 000, and � = 9500, ��� = 310 000, ��� = 500 000 were used, for spring barley and winter 

wheat, respectively. The size of ��� is of no importance for ranking of varieties. Trials with � 
varieties were simulated, where � was set to 25 and 30 for spring barley and winter wheat, 
respectively, since Swedish trials in spring barley often includes somewhat fewer varieties 
than Swedish trials in winter wheat (Tables 1 and 2). 

Series with � = 1, 3, 5, 7, 10, 12, 15, 20, 25, 30, 50 and 100 trials were simulated. For each 
value of �, 1000 series were generated, each in the following way. First, � variety means, 
��, ��, … , ��, were simulated from a normal distribution with expected value � and variance 

���. Next, � normally distributed random numbers, �̂�, �̂�, … , �̂�, were generated with 

expected value ��, � = 1, 2, … ,�, and variance ���/�. In this way, the “observed” variety 

means, �̂�, �̂�, … , �̂�, were simulated directly, since it was not necessary to first simulate the 
data according to model (1), and then calculate the averages. Spearman’s rank correlation 
between ��, ��, … , �� and �̂�, �̂�, … , �̂� was computed for each simulated series. For each crop 
and value of �, 1000 rank correlations were obtained. Their distributions were reported 
using quantiles and boxplots. Let �̂���, �̂��� and �̂�$� denote the three highest values of 

{�̂�, �̂�, … , �̂�}, and let ����, ���� and ��$� denote their corresponding expected values. The 

genetic advance under selection was estimated as the difference between the average of 

����, ���� and ��$� and the average of all ��, i.e., '���� + ���� + ��$�( 3⁄ − ∑ ���� /�. For each 

crop and value of �, 1000 estimates of the genetic advance under selection were obtained. 
The expected genetic advance under selection was estimated as the average of these 1000 
estimates. Simulations were performed using R, version 3.1.1. Box 1 includes the basic code. 

Box 1. R code for simulation of rank correlation 

### Simulation of a series in spring barley with 30 trials and 25 varieties 

# Parameters 

mean <- 7400 

s_A <- sqrt( 68000) 

s_E <- sqrt(130000) 

NVarieties <- 25 

NTrials <- 30 

NSimul <- 1000 

# Simulation 

vec.mu <- rnorm(n = NVarieties*NSimul, mean = mean, sd = s_A) 

vec.Y <- rnorm(n = NVarieties*NSimul, mean = vec.mu, sd = s_E/sqrt(NTrials)) 

mu <- matrix(vec.mu, ncol = NSimul) 

Y <- matrix(vec.Y, ncol = NSimul) 

Spear <- matrix(NA, nrow = 1, ncol = NSimul)    # Spearman’s rank correlation 

GAS <- matrix(NA, nrow = 1, ncol = NSimul)      # Genetic advance under selection 

for (j in 1:NSimul){ 

  Spear[ , j] <- cor(Y[ , j], mu[ , j], method = "spearman") 

  GAS[ , j] <- (mu[ , j][rank(Y[ , j])== NVarieties] + mu[ , j][rank(Y[ , j])== 

NVarieties-1] 

  + mu[ , j][rank(Y[ , j])== NVarieties-2])/3 - mean(mu[ , j])} 

# Result 

quantile(Spear, probs = c(0.05, 0.10, 0.25, 0.5, 0.75, 0.90, 0.95)) 

boxplot(t(Spear), ylim = c(0, 1)) 

abline(h = seq(0, 1,0.1), v = 1, col = "gray", lty = 3) 

mean(GAS) 
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SIMULATION OF FIVE-YEAR SERIES 

For simulation of five-year data, parameter values were chosen based on the estimates 

(see the Results section) from the fits of Model (2). Parameters � = 7500, ��� = 75 000, ��� = 

141 000, ����  = 7600, ��� = 1 655 000 ��� = 131 000, and � = 9500, ��� = 367 000, ��� = 763 000, ����  
= 52 000, ��� = 2 304 000 ��� = 542 000 were used, for spring barley and winter wheat, 
respectively. In Swedish variety testing, a variety must have been tested the last year and at 
least one additional year, to be included in the five-year analysis. Every year, less performing 
varieties are replaced by new varieties. For this reason, five-year data is unbalanced. To 
mimic a typical five-years series, it was for spring barley assumed seven varieties were 
present all five years, five were present only the four last years, five only the three last years 
and eight only the two last years. For winter wheat, it was assumed ten varieties were 
present all five years, five were present only the four last years, five only the three last years, 
and ten only the two last years. Thus, � = 25 varieties were tested in spring barley, and � = 
30 varieties were tested in winter wheat. For simplicity, it was assumed that exactly � trials 
were performed each year. Series with � = 1, 3, 5, 7, 10, 12, 15, 20, 25, 30, 50 and 100 trials 
were simulated using model (2). 

In Swedish variety testing, five-year data is analyzed using Model (2), but with fixed 
effects of varieties. In the simulation study, this mixed-effects model was fitted using the 
lmer function of R, with the default REML method. Least square means, �̂�, �̂�, … , �̂�, were 
computed for the varieties. These were compared with the true means: ��, ��, … , �� 
generated through the simulation. The �th true mean, ��, is the simulated intercept plus the 
simulated random effect of the the �th variety. Spearman’s rank correlation between 
��, ��, … , �� and �̂�, �̂�, … , �̂� was computed for each simulated series. For each crop and 
value of �, 1000 rank correlations were obtained. 

POPULATION CORRELATION COEFFICIENTS 

For one-year series, population correlation coefficients can be computed exactly. Given 

the variances ��� and ���, the Pearson correlation coefficient - can be computed, for various 
values of �, using the equation 

 - = ./	��� , �̂��	
0var����var��̂��

= ���
0������� + ��� �⁄ �	, 

 

(3) 

Given (3), the expected value of the Spearman rank correlation -� can be computed 
using the exact equation (Moran, 1948) 

 4�-�� = 6
6	7

� − 2
� + 1 	arcsin

-
2 	+ 	 1

� + 1 	arcsin -<		. 
 

(4) 
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RESULTS 

PARAMETER ESTIMATES 

Tables 3a and 4a reports, for spring barley and winter wheat, respectively, estimates of 
expected mean yield and variance components using model (1). Tables 3b and 4b presents 

the estimates of the variance components expressed as coefficients of variation: CV = √�� �A 	. 
 
Table 3a. Estimates, for spring barley, of expected yield μ (kg/ha), variance between varieties 

���, variance between trials ���, and residual variance ���. 

Parameter 2015 2014 2013 2012 2011 Mean

� 7912 7462 7561 7620 6560 7423

��� 141632 76009 18187 54707 49534 68014

��� 926594 2623146 1729659 1599108 1378978 1651497

��� 149648 113014 104356 161065 117829 129183

 
Table 3b. Variances of Table 3a (spring barley) expressed as coefficients of variation (CV). 

 2015 2014 2013 2012 2011 Mean

Variety 0.048 0.037 0.018 0.031 0.034 0.035

Trial 0.122 0.217 0.174 0.166 0.179 0.173

Error 0.049 0.045 0.043 0.053 0.052 0.048

 

 

Table 4a. Estimates, for winter wheat, of expected yield μ (kg/ha), variance between varieties 

���, variance between trials ���, and residual variance ���. 

Parameter 2015 2014 2013 2012 2011 Mean

� 10714 10279 9433 8917 8106 9490

���  291248  289494  189195  656820  122160 309783

��� 1395589 1817879 2895728 2001840 4105331 2443273

���  417852  761293  279357  799923  241835 500052

 
Table 4b. Variances of Table 4a (winter wheat) expressed as coefficients of variation (CV). 

 2015 2014 2013 2012 2011 Mean

Variety 0.050 0.052 0.046 0.091 0.043 0.059

Trial 0.110 0.131 0.180 0.159 0.250 0.165

Error 0.060 0.085 0.056 0.100 0.061 0.075
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On average, coefficient of variation for error was larger in winter wheat (0.075) than in 
spring barley (0.048). This was expected, since winter weather can have a large impact on 
variation. It was noted that coefficient of variation for varieties was also larger for winter 
wheat (0.059) than for spring barley (0.035). 

Considering multi-year analysis, Table 5 reports estimates of expected mean yield and 
the variance components using model (2). Variety-by-year interaction was larger in winter 
wheat than in spring barley. 
 

Table 5. Estimates of expected yield μ (kg/ha), variance between varieties	���, variance 

between years ���, variance for variety-by-year interaction ���� , variance between trials ���, 
and residual variance ���. Variances are also expressed as coefficients of variation (CV). 

Parameter Spring barley CV Winter wheat CV 

� 7457  9463  

��� 74826 0.037 366546 0.064 

��� 140860 0.050 763174 0.092 

����  7658 0.012 52027 0.024 

��� 1655329 0.173 2304336 0.160 

��� 131380 0.049 542054 0.078 

RANK CORRELATION IN ONE-YEAR SERIES 

Table 6 shows obtained correlations between estimated and correct ranks in one-year 
series with � trials, for spring barley. The 50th percentile is the median. The 25th and 75th 
percentiles are also known as the first and third quartile, respectively. For example, when 
series with � = 10 trials were simulated, the median of the obtained 1000 rank correlations 
was 0.90. Since the fifth percentile was 0.80, the rank correlation was smaller than 0.80 in 5% 
of the simulated series of � = 10 trials. 

 
Table 6. Correlation between estimated ranks and correct ranks was computed in 1000 
simulated one-year series of � trials in spring barley. This was made for twelve values of �. 
The table reports percentiles for the distributions of the obtained rank correlations. 

   Percentile 

� 5 10 25 50 75 90 95 

1 0.28 0.36 0.46 0.57 0.66 0.74 0.77 

3 0.56 0.61 0.69 0.76 0.82 0.86 0.88 

5 0.68 0.71 0.77 0.84 0.88 0.90 0.92 

7 0.74 0.77 0.82 0.87 0.90 0.93 0.94 

10 0.80 0.83 0.86 0.90 0.93 0.95 0.95 

12 0.82 0.85 0.88 0.91 0.94 0.95 0.96 

15 0.85 0.87 0.90 0.93 0.95 0.96 0.97 

20 0.87 0.89 0.92 0.94 0.96 0.96 0.97 

25 0.89 0.91 0.93 0.95 0.96 0.97 0.98 

30 0.91 0.92 0.94 0.96 0.97 0.98 0.98 

50 0.93 0.95 0.96 0.97 0.98 0.99 0.99 

100 0.96 0.97 0.98 0.98 0.99 0.99 0.99 
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Table 7 shows obtained correlations between estimated and correct ranks in one-year 
series with � trials, for winter wheat. Still using series with 10 trials as an example, the 
median rank correlation was 0.91 for winter wheat, and in 5% of the 1000 simulated series, 
the rank correlation was lower than 0.83. 
 
Table 7. Correlation between estimated ranks and correct ranks was computed in 1000 
simulated one-year series of � trials in winter wheat. This was made for twelve values of �. 
The table reports percentiles for the distributions of the obtained rank correlations. 

   Percentile 

� 5 10 25 50 75 90 95 

1 0.34 0.41 0.51 0.60 0.68 0.73 0.78 

3 0.62 0.66 0.73 0.79 0.84 0.87 0.88 

5 0.72 0.76 0.81 0.85 0.89 0.91 0.92 

7 0.78 0.81 0.85 0.89 0.91 0.93 0.94 

10 0.83 0.85 0.89 0.91 0.94 0.95 0.96 

12 0.85 0.87 0.90 0.93 0.94 0.96 0.96 

15 0.87 0.89 0.92 0.94 0.95 0.96 0.97 

20 0.90 0.93 0.94 0.95 0.96 0.98 0.98 

25 0.92 0.94 0.95 0.96 0.97 0.98 0.98 

30 0.93 0.94 0.95 0.96 0.97 0.98 0.98 

50 0.95 0.96 0.97 0.98 0.98 0.99 0.99 

100 0.97 0.97 0.98 0.99 0.99 0.99 0.99 

 
Generally, rank correlation increases with the number of trials. At the same time, 

variation in rank correlation decreases. This is evident from Tables 6 and 7, but is even more 
obvious in Figures 1 and 2, which report simulation results as box plots, for spring barley 
and winter wheat, respectively. In these box plots, the median is indicated as a bold 
horizontal line within the rectangular boxes. The boxes are limited upwards by the 75th 
percentile and downwards by the 25th percentile. Thus, 50% of simulated rank correlations 
are included in the box and the width of the box is the interquartile range, which is a 
measure of the variation. The boxplot whiskers extend out from the box at most one and a 
half interquartile range. 

The Appendix exemplifies what correlation may look like for various rank correlations. 
These examples illustrate the importance of the rank correlation being high. For example, 
Figure A5 is a plot of observed ranks versus correct ranks in one of the simulated series 
containing 25 varieties of spring barley. The observed ranks are the ranks obtained in the 
simulated series. The correct ranks are the ranks that theoretically would have been observed 
if the series included infinitely many trials. In this series the rank correlation was 0.80. 
Although this rank correlation might seem high, the second best variety (i.e., the correct rank 
is 2), was observed as the seventh best variety in the series (the observed rank is 7). 
Furthermore, the 18th best variety out of 25 (correct rank 18) was observed as the fifth best 
variety in the series (observed rank 5). 
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Figure 1. Correlation between estimated ranks and correct ranks was computed in 1000 
simulated one-year series of � trials in spring barley. This was made for twelve values of �. 
The figure shows box plots for the distributions of the obtained rank correlations. 

 
Figure 2. Correlation between estimated ranks and correct ranks was computed in 1000 
simulated one-year series of � trials in winter wheat. This was made for twelve values of �. 
The figure shows box plots for the distributions of the obtained rank correlations. 
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Using (3) and (4), it is easily confirmed that the distributions shown in Figures 1 and 2 

agree well with the theoretical population rank correlation coefficients. For example, in a 
one-year spring-barley series with � = 3 trials, the population Pearson correlation coefficient 
is 

- = 68	000
068	000�68	000 + 130	000 3⁄ � = 0.7815	, 

and the population Spearman correlation coefficient is 

-� = 6
6	7

25 − 2
25 + 1 	arcsin

0.7815
2 	+ 	 1

25 + 1 	arcsin 0.7815< 	= 0.7442	. 
However, Figure 1 tells much more about the distribution of the rank correlation 

coefficient, than this single number does. 

RANK CORRELATION IN FIVE-YEAR SERIES 

Tables 8 and 9 present results for simulation of five-year series. These tables list the 
percentiles of the observed rank correlations, for spring barley and winter wheat, 
respectively. The same distributions are illustrated using boxplots in Figures 3 and 4. In these 
tables and figures, � is the number of trials per year. In five-year series, the distributions are 
similar when � is larger than 10. 

 
Table 8. Correlation between estimated ranks and correct ranks was computed in 1000 
simulated five-year series with � trials/year in spring barley. This was made for twelve 
values of �. The table reports percentiles for the distributions of the obtained rank 
correlations. 

   Percentile 

� 5 10 25 50 75 90 95 

1 0.57 0.62 0.70 0.77 0.83 0.87 0.89 

3 0.77 0.80 0.85 0.89 0.92 0.94 0.94 

5 0.83 0.85 0.89 0.91 0.94 0.95 0.96 

7 0.86 0.88 0.90 0.93 0.95 0.96 0.97 

10 0.88 0.90 0.93 0.94 0.96 0.97 0.98 

12 0.88 0.90 0.93 0.95 0.96 0.97 0.98 

15 0.89 0.91 0.93 0.95 0.97 0.98 0.98 

20 0.91 0.92 0.94 0.96 0.97 0.98 0.98 

25 0.91 0.93 0.95 0.96 0.97 0.98 0.98 

30 0.92 0.93 0.95 0.96 0.97 0.98 0.98 

50 0.92 0.94 0.95 0.97 0.98 0.98 0.99 

100 0.93 0.94 0.96 0.97 0.98 0.98 0.99 
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Table 9. Correlation between estimated ranks and correct ranks was computed in 1000 
simulated five-year series with � trials/year in winter wheat. This was made for twelve 
values of �. The table reports percentiles for the distributions of the obtained rank 
correlations. 

   Percentile 

� 5 10 25 50 75 90 95 

1 0.63 0.66 0.72 0.79 0.84 0.88 0.90 

3 0.79 0.82 0.86 0.89 0.92 0.94 0.95 

5 0.84 0.86 0.89 0.92 0.94 0.95 0.96 

7 0.86 0.88 0.91 0.93 0.95 0.96 0.97 

10 0.88 0.90 0.92 0.94 0.96 0.97 0.97 

12 0.89 0.91 0.93 0.95 0.96 0.97 0.98 

15 0.90 0.91 0.93 0.95 0.96 0.97 0.98 

20 0.91 0.92 0.94 0.95 0.97 0.97 0.98 

25 0.91 0.92 0.94 0.96 0.97 0.98 0.98 

30 0.91 0.93 0.94 0.96 0.97 0.98 0.98 

50 0.92 0.93 0.95 0.96 0.97 0.98 0.98 

100 0.93 0.94 0.95 0.96 0.98 0.98 0.98 

 

Figure 3. Correlation between estimated ranks and correct ranks was computed in 1000 
simulated five-year series of � trials per year in spring barley. This was made for twelve 
values of �. The figure shows box plots for the distributions of the obtained rank 
correlations. 
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Figure 4. Correlation between estimated ranks and correct ranks was computed in 1000 
simulated five-year series of � trials per year in winter wheat. This was made for twelve 
values of �. The figure shows box plots for the distributions of the obtained rank 
correlations. 
 

Table 10. Estimated expected genetic advance under selection (kg/ha) by the number of 
trials (�). In one-year series, � is the total number of trials. In five-year series, � is the 
number of trials per year. 

 One-year series Five-year series 

� Spring barley Winter wheat Spring barley Winter wheat 

1 250 601 334 831 

3 329 766 393 912 

5 356 824 406 942 

7 370 850 402 962 

10 384 876 419 970 

12 389 887 418 961 

15 394 896 415 971 

20 399 907 422 973 

25 402 913 421 984 

30 406 917 421 979 

50 411 927 424 978 

100 414 935 421 994 
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EXPECTED GENETIC ADVANCE UNDER SELECTION 

Table 10 reports estimates of the expected genetic advance under selection, provided the 
top three varieties are selected. The expected genetic advance under selection is increasing 
with �. As a function of �, the expected genetic advance under selection is to begin with 
increasing fast when � grows from 1 upwards, but as � grows, the growth rate of the genetic 
advance under selection decreases. 

DISCUSSION 

The researcher must decide the reasonable number of trials in a series, provided that a 
high rank correlation is desired. From the figures of this article, including those in the 
Appendix, it should be clear that the results of a series of crop variety trials can be 
misleading if the series includes only a small number of trials. 

For example, if three Swedish spring barley trials with 25 varieties are analyzed 
together, the probability of a rank correlation smaller than 0.61 is 10% (Table 6). This 
computation assumes the variance components of Table 3a. Figure A3 in the Appendix, 
shows what results might look like when the rank correlation is as small as 0.60, which is 
quite probable for an experiment with three trials. In that particular case, including 25 
varieties, the variety that yielded the most in the experiment (observed rank 1) was actually 
the 17th best variety (correct rank 17). More trials would have revealed that this variety was 
not one of the top varieties, but just the 17th best out of 25. 

Results of a single trial can be very misleading. In a single trial, the rank correlation 
between observed and correct ranks is often smaller than 0.5, which is not much informative 
(see Figure A1 for an example). In unfortunate cases, the rank correlation based on a single 
trial can even be negative (Figures 1 and 2), which in practice means that high-performing 
varieties can perform poorly in a single trial. 

If we would like the rank correlation to be higher than 0.90 with probability 95%, then 20 
trials are needed in winter wheat (Table 7), because the fifth percentile is 0.90 for one-year 
series with 20 trials. In spring barley, more than 25 but less than 30 trials are needed for the 
same specification (Table 6). If we would instead like the rank correlation to be higher than 
0.85 in nine cases out of ten, then 10 trials are needed for a one-year series in winter wheat 
(Table 7). In spring barley, one-year series with 12 trials meet this requirement (Table 6). 

The inference space is different in a multi-year series than in a one-year series. In a 
multi-year series, long-term differences between varieties are investigated through a 
“sample” of years. This is not the case in a one-year series, for in such it is impossible to 
draw any conclusions about other years than the one investigated. In five-year series, the 
distributions were similar for all investigated � larger than 10. Thus, for ranking of varieties 
based on five-year series, it does not help much to include more than 10 trials per year. The 
precision, however, would be improved by increasing the number of years. 

Note that the numbers reported in Tables 6–9 are not probabilities of obtaining a 
completely correct ranking. The reported numbers are rank correlations. The ranking of the 
varieties is completely correct only when the rank correlation is exactly 1. This occurs very 
rarely. In one-year series with 100 trials, an incorrect ranking is obtained with at least 
probability 95% (Tables 6 and 7). Also, in five-year series with 100 trials per year, an incorrect 
ranking is obtained with at least probability 95% (Tables 8 and 9). 

In Swedish variety trials, coefficient of variation for error is usually larger in winter 
wheat than in spring barley. For this reason, series in winter wheat were expected to require 
more trials than series in spring barley. However, for estimation of the correct ranking of 
varieties, this study revealed that more trials are needed in spring barley than in winter 
wheat. The reason for this surprising result is that not only error variation is larger in winter 
wheat, but also varieties differ more with regard to yield in winter wheat than in spring 
barley. The correct ranking is easier to estimate when differences between varieties are large, 
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as in winter wheat, than when differences are smaller as in spring barley. However, also the 
size of the error variation is important. In multi-year series, the size of the variety-by-year 
interaction is crucial. The present article shows how the relative importance of these variance 
components can be assessed by simulation. 

Since variance components vary between regions, it is advisable to perform the 
simulation study using variances that are typical for the region of interest. For example, a 
separate analysis was made for the subset of winter wheat trials performed in Sweden’s 
southernmost province, Scania. The results of this study are not reported here, but it turned 
out that inter-variety variation was larger in Scania than in the rest of the country. Winter 
weather in southern Sweden was such that some sensitive varieties did not fare well in 
Scania, while other varieties fared better, especially in 2012 and 2014. At the same time, error 
variance was about as big in Scania as in Sweden’s other farming areas. For this reason, it 
was concluded that for one-year series of winter wheat, somewhat less trials are needed if 
the trials are performed in Scania than if the trials are performed in more northern regions of 
Sweden. 

Some winter wheat trials with severe damage due to winter weather conditions were 
excluded from this study, since in Sweden such trials are not included in analyses of series. 
This may be one explanation for winter wheat variance components being smaller in this 
study than in the study performed by Forkman, Amiri and von Rosen (2012). 

The effects of the varieties were assumed to be normally distributed. In fact, some of the 
years the distributions of variety means were negatively skewed. This occurred in both 
crops, but especially in winter wheat in 2012 and 2014. These years, some of the winter wheat 
varieties gave considerable lower yield than the most. When the distribution is negatively 
skewed like this it is easier to rank varieties giving low yield than varieties giving high yield. 
If it is particularly important to rank high-performing varieties correctly and the distribution 
of variety means can be negatively skewed, then it is advisable to include somewhat more 
trials in the series than this study indicates. 
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APPENDIX 

  

Figure A1. Rank correlation 0.40. 

 
Figure A2. Rank correlation 0.50. 

 

  

Figure A3. Rank correlation 0.60. 

 
Figure A4. Rank correlation 0.70. 
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Figure A5. Rank correlation 0.80. 

 
Figure A6. Rank correlation 0.85. 

 

  

Figure A7. Rank correlation 0.90. Figure A8. Rank correlation 0.95. 
 


