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ABSTRACT 
Linear models and generalized linear models are well known and are used extensively in crop science. 
Generalized additive models (GAMs) are less well known. GAMs extend generalized linear models 
through inclusion of smoothing functions of explanatory variables, e.g., spline functions, allowing the 
curves to bend to better describe the observed data. This article provides an introduction to GAMs in the 
context of crop science experiments. This is exemplified using a dataset consisting of four populations of 
perennial sow-thistle (Sonchus arvensis L.), originating from two regions, for which emergence of shoots 
over time was compared. 
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INTRODUCTION 

Generalized additive models (GAMs), introduced by Hastie and Tibshirani (1986), relax 
and extend generalized linear models. GAMs are useful for applications where polynomials 
fail to describe the observed curvature in the data because they include splines or local 
regression smoothing (LOESS) functions (Cleveland 1979). The output of a GAM analysis is 
mainly graphical; the explicit resulting smoothing function is complicated since it is not a 
function of any easily interpreted parameters (Venables and Dichmont 2004). Although 
primarily used for exploratory purposes, GAMs can also be used for approximate statistical 
inference, e.g., hypothesis testing. GAMs are said to be non-parametric (Yee and Mitchell 
1991) or semi-parametric (Guisan et al. 2002), which refers here to the lack of a particular 
functional form of the relationship between the dependent variable Y and the explanatory 
variable	�. GAMs have been available in some software since the early 1990s (Hastie 1992, 
Hilbe 1993), are available in, for example, the SAS System (SAS Institute 2008) and the open 
source environment R (Wood 2006a). 
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GAMs are rarely used in agronomy, although they could be useful in various 
applications. This article offers a starting point for further study of GAMs for readers who 
have basic knowledge of statistics as a complement to other fields of research. We 
specifically describe how GAMs can be used for comparing effects of experimental 
treatments, since this information is often lacking in other reviews. An example illustrates 
how GAMs can be fitted using the SAS System and R. Fitting GAMs is compared with fitting 
polynomials. 

GAMs can be explained with reference to linear models (LMs), generalized linear models 
(GLMs), and additive models (AMs). The LM, with a single response variable, �, and � 
explanatory variables takes the form:

  � � 	�� � �	
	 � ��
��. . . ��


 � � ,       (1) 

where �� is the intercept and �	, ��, … , �
 are the regression coefficients, i.e., the slopes of the 

explanatory variables. In many applications, there is only a single explanatory variable, for 
example time. In this case, Eq. 1 reduces to a simple linear regression model	� � 	�� � �	
	 ��. For statistical inference, it is assumed that the error terms, �, are (i) normally distributed 
with expected value 0; (ii) have the same variance; and (iii) are independent. It is also 
assumed that (iv) the values 
	, 
�, … , 

 are fixed, i.e., have no variance, and are known. 

In LMs, the mean,	�, can be written as: 	� � �� � �	
	 � ��
��. . . ��


, i.e., it is a direct 

linear function of the parameters. In GLMs, a transformation, ����, of the mean is a linear 
function of the parameters. Thus, a transformation of the mean is modeled instead of the 
observations �. GLMs extend LMs to link functions other than the identity. Assumptions (i) 
and (ii) for LMs are relaxed. GLMs consist of three components: the random component, 
which is the response variable and its probability distribution; the systematic component, 
which is a linear function of the explanatory variables; and the link function, which links the 
random and the systematic components. With � explanatory variables, a GLM can be written 
as: 

���� � 	�� � �	
	 � ��
��. . . ��


	,       (2) 

where ���� is the link function and ��, �	, … , �
 are the parameters to be estimated. The log 

link, ���� � log �, and the logit link, ���� � log�� �1 � ��⁄ �, are common links and are 
usually chosen when observations are Poisson and binomially distributed, respectively. 
GLMs can be used for any distribution from the exponential family of distributions, which 
also includes for example the gamma and negative binomial distributions (McCullagh and 
Nelder 1989). 

In AMs, the terms �	
	, ��
�, . . . �


 in Eq. 1 are replaced by smoothing functions 

�	�
	�, ���
��, … , �
�

�, which can be splines or LOESS functions. These are smooth curves 

that estimate the functional relationship in noisy data. The AM can be written as: 
� � 	�� � �	�
	� � ���
���. . . ��
�

� � � .

      
(3) 

Combination of GLMs and AMs gives a GAM: 
���� � 	�� � �	�
	� � ���
���. . . ��
�

�	.      (4) 

In contrast to AMs, GAMs are not restricted to the normal distribution, but can be used for 
any probability distribution from the exponential family. Just as with the other models, 
GAMs require explanatory variables to be measured without errors. Additionally, high 
correlation of explanatory variables causes inferential problems because individual effects of 
the explanatory variables cannot be separated. 

SMOOTHING FUNCTIONS 

LMs partition data into “model + error”, while smoothing functions separate data into 
“smooth + rough” and strive to minimize the rough part as much as possible (Hastie and 
Tibshirani 1990). Many types of smoothing functions are available, but all rely on the same 
principles: 
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• Each observation in the dataset is predicted from a regression model fitted to the 
surrounding observations. 

• The resulting graph, i.e., the curve of the smoothing function, is smooth. 

• The smoothness of the curve is controlled by a smoothing parameter λ. 

LOESS functions work as follows: For each value 
� of the explanatory variable	�, a 
neighborhood (also called window, band or span) is defined. Within these neighborhoods, 
low-order polynomials are fitted using weighted regression. First- or second-order 
polynomials are generally used. To emphasize that weighted regression is used rather than 
ordinary regression, LOESS is sometimes called LOWESS. Values close to 
� are weighed 
higher than values far from	
�. This fitting process may be repeated several times, during 
which observations with large residuals are down-weighted. Given the polynomial degree, 
the smoothness is controlled by the band width, which functions as the smoothing 
parameter. The band width is usually defined as the proportion of the data used in the local 
regression fit. For example, this proportion may be set to λ � 0.25, indicating that 25% of the 
data are used in each local regression. Values larger than λ � 0.25 are often preferred, but the 
choice depends on the data. A higher value of the smoothing parameter λ gives a smoother 
fit than a lower value. In practice, the smoothing parameter is frequently determined by trial 
and error based on visual inspection of the fitted curve compared with the observations. 
Undesirable patterns, as results of inadequate fits, can be detected in plots of residuals 
against fitted values. The obstacle to straightforward application of GAMs is that the same 
set of data can give rise to different interpretations because the result will depend on the 
degree of smoothing, which is chosen by the analyst.  

Cubic splines are third-degree polynomials that are fitted in adjacent neighborhoods 
connected at so-called knots. At these knots, the polynomials are constrained to have the 
same derivatives, so that the polynomials join smoothly. The degree of smoothness can be 
controlled by the number of knots, with a large number of knots giving a smoother curve 
than a small number. The knots need not be equally spaced on the 
-axis. In intervals with 
many knots, the curve becomes more flexible than in intervals with few knots. Cubic splines 
can be chosen on the basis of visual inspection of fitted curves and residuals. 

Nowadays, cubic splines are usually fitted by optimizing a penalized least squares 
criterion. In the case of a single explanatory variable, this criterion, which should be 
minimized, can be written as: 
 "��� � ��
���� � λ$��%%�
����&


'

�(	
	.  

(5) 

Here, �%%�
�� is the second order derivative of the smoothing function �. The penalized least 
squares criterion (Eq. 5) consists of two terms. The first one measures closeness to 
observations while the second one penalizes high curvature, giving the curve a smooth 
appearance. If	λ � 0, then Eq. 5 reduces to the standard least squares criterion, according to 
which the smoothing function,	��
�, should be chosen such that the error sum of squares is 
minimized. It would result in a highly curvaceous graph that joins all observations. Since a 
smooth curve is preferred, a positive λ value is always used. The second-order derivative in 
Eq. 5, which measures curvature, is squared and integrated over the 
-axis. Thus, a high 
value of the smoothing parameter λ penalizes curvature more than a lower value and results 
in a smoother curve. At one extreme, i.e., when λ → ∞, the penalty term dominates, so that 
the graph of the optimal function is a straight line. At the other extreme, i.e., when λ → 0, the 
penalty term becomes unimportant and the optimal curve wriggles up and down, tracing the 
observations. 

The smoothing parameter λ is usually determined indirectly through the choice of 
effective degrees of freedom, which can be thought of as the “tune” that determines 
curviness (Jones and Almond 1992). The number of effective degrees of freedom is analogous 
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to the number of degrees of freedom of a LM, which is the number of linear constraints or, 
for the error, the difference between the number of observations and the number of linear 
constraints. Most computer software has options for specifying the preferred number of 
effective degrees of freedom. The more effective degrees of freedom the smoothing function 
uses, the rougher and more complex the curve becomes. The choice of the appropriate level 
of smoothing, by specifying the effective degrees of freedom, is among the most crucial steps 
in fitting GAMs. Smoothness and fit must be balanced. When the model includes several 
smoothing functions, they can have varying numbers of effective degrees of freedom. 

The number of effective degrees of freedom can also be chosen automatically, using cross 
validation. Through cross validation, points �
� , ��� are left out, one at a time, and the 
smoothing function at 
� is estimated based on the remaining + � 1 data points. Cross 
validation sum of squares for the smoothing parameter λ is computed for a range of	λ. The 
preferred estimate of λ is that which minimizes this sum of squares. However, cross 
validation may be time consuming, even with fast computers. Instead, a weighted version of 
the full cross validation procedure may be used (SAS Institute 2008). The performance of 
automatic procedures for choosing the smoothing parameter is sometimes poor, which in 
many cases is evident, taking into account the biological interpretation when inspecting the 
resulting plots. This will be further described in the sections “How to assess model fit” and 
“Example”. In practice, a smoothing parameter is commonly chosen so that the number of 
effective degrees of freedom is around 3–5. 

Smoothing functions are easily fitted for models with one or two explanatory variables. 
However, models with several explanatory variables, sometimes in interaction (e.g. the effect 
of the dose of a herbicide may depend on the seed rate of the crop), are common. Smoothing 
is possible in such cases too. Consider a model with � explanatory variables and one 
response variable. If � � 1, smoothing is done in two dimensions, plotting the response 
variable against the explanatory variable. If � � 2, there are three dimensions, and the graph 
of the smoothing function is a two-dimensional curved surface. If � , 2, it is difficult to 
visualize the graph. Variants of surface smoothers have been developed for � , 1 
explanatory variables. The thin-plate regression spline (Wood 2003) is a �-dimensional 
version of the cubic spline fitted through penalized least squares. Thin-plate regression 
splines are isotropic, i.e., they are not affected if the co-ordinate system of the explanatory 
variables is rotated. The assumption of isotropy (uniformity in all directions) is reasonable 
when the variables are on the same scale, for example when two explanatory variables 
measure geographical location in two dimensions. However, isotropic smoothing functions 
are less suitable when the explanatory variables measure different things, for example when 
one variable measures distance and the other time. Using an isotropic smoothing function, 
the result will depend on the units chosen, for example whether the explanatory variables 
are measured in hours and meters, or weeks and inches (Wood 2006a). In such situations , 
anisotropic smoothing functions may be preferable. In particular, tensor-product smoothing 
functions (Wood 2006b), constructed from univariate smoothing functions, are frequently 
used. 

STEPS IN GENERALIZED ADDITIVE MODELLING 

HOW TO SPECIFY MODELS 
For controlled experiments, pure GAMs (such as ���� � 	�� � ��
� for a single 

explanatory variable) are rarely adequate. Since experiments usually aim at comparing 
treatments, treatment factors must be included in the model. A GAM will then comprise 
more parameters and several non-parametric smoothing functions.  
If ���� as a function of 
 is generally increasing or decreasing in 
, not as a perfect straight 
line, but as a bending curve around a straight line, this can be modeled as a combination of a 
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straight line and a smoothing function. With a single explanatory variable, this model is 
written as: 

���� � 	�� � �	
 � ��
�	.        (6) 
Here, the parametric linear effect �	
 is separated from the effect of the smoothing function 
��
�. This makes it possible to test the null hypothesis that the model is linear against the 
alternative that the model is non-linear. By definition, the smoothing function is centered 
around 0, so the resulting flexible curve becomes centered around the estimated line. If the 
term �	
 were omitted from Eq. 6, the smoothing function ��
� would describe the sum of all 
linear and non-linear effects of 
. Higher-order polynomials, for example a quadratic curve 
or a cubic curve, can be fitted combined with a smoothing function only when the dataset is 
large. 

Categorical explanatory variables can be included as factors in GAMs. It is convenient to 
use dummy variables for coding the factor levels. Thus, let &- denote a dummy variable that 

takes the value 1 when the observation belongs to the jth level of the factor, and 0 otherwise. 
For an experiment with two treatments (i.e., a treatment factor with two levels), Eq. 6 can be 
augmented into 

���� � 	�	&	 � ��&� � �.
 � ��
�	,       (7) 
which is a model with treatment-specific intercepts and a smooth curve around a straight 
line. According to Eq. 6, the curve of the first treatment is parallel to the curve of the second 
treatment. This model is analogous to the linear model for analysis of covariance assuming 
parallel slopes. Eq. 7 can easily be extended to a model for experiments with / , 2 
treatments, through the use of / dummy variables and / � 1 parameters: �	, ��, . . ., �01	. It is 

usually not necessary to construct a data set with dummy variables, because statistical 
software packages do this work automatically if informed that the explanatory variable is a 
factor. However, for interpretation of parameter estimates it is essential to know exactly how 
the specific statistical software package codes the factor levels. 

A model with two treatment-specific curves, i.e., a model with two curves that are not 
parallel, can be specified as: 

���� � 	�	&	 � ��&� � �.&	
 � �2&�
 � �	�
�&	 � ���
�&�	.   (8)
 

Eq. 8 describes a varying-coefficient model (Hastie and Tibshirani 1993). This model is in 
effect similar to an analysis of covariance model with dissimilar slopes. Note that the 
smoothing functions �	and �� should be functions of 
, and not of the products 
&	 and 

&�.This is because when &	 is zero, the observation should not be included in the fit of the 
smoothing function �	 (and similar, when &� is zero, the observation should not be included 
in the fit of ��).  

We can use two types of models with two continuous explanatory variables. The first 
uses two separate smoothing functions for each variable, as here: 

���� � 	�� � �	�
	� � ���
�� ,        (9) 
where 
	 and 
� are two continuous explanatory variables, for example longitude and 
latitude. The second one uses a single smoothing function for both variables: 

���� � 	�� � ��
	, 
�� .          (10) 
While Eq. 9 does not allow for interaction between 
	 and 
�, Eq. 10 does. Such interaction 
means that the effect of one variable depends on the value of the other. For example, grain 
yield of a certain wheat variety depends on nitrogen fertilization, but also on the available 
soil water content: since water is needed for uptake of nutrients, the effect of fertilization 
depends on the soil water content. So, nitrogen fertilization interacts with soil water content 
in terms of affecting grain yield. Eqs 9 and 10 can easily be extended to any number of 
continuous explanatory variables. For models including many variables, however, fitting 
may be difficult. 

In agricultural science, it is common to perform comparative experiments, in which 
treatments (e.g. soil preparation methods) are compared with each other. The treatments can 
be represented in the model through the use of dummy variables. The experiment might also 
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include some continuous explanatory variables (e.g. clay and soil water content) that could 
possibly interact with each other. One of the scientific questions might be whether a 
smoothing function of these two continuous variables is different for the two soil preparation 
methods. Using dummy variables &		 and	&� for the two soil preparation methods, the 
appropriate statistical model is: 

���� � �	&	 � ��&� � �	�
	, 
��&	 � ���
	, 
��&�.     (11) 
Under the null hypothesis that there is no difference between the two treatments in the 
smoothing functions �	 and ��, Eq. 11 reduces to Eq. 10. If the experiment compares 3 
treatments, then the model from Eq. 11 will be expanded to include 2 3 terms. 

HOW TO FIT MODELS 

“The aim in a good smooth is to capture fully the underlying trend, 
while not paying too much attention to underlying noise.”  
(Jones and Almond 1992, p. 437)  

Shipley and Hunt (1996) compared LOESS and cubic spline smoothing functions. They 
concluded that both methods “represent versatile and accurate ways of form-free curve 
fitting” that “capture main trends”. In their study, LOESS gave slightly better results. 
However, nowadays cubic spline smoothing functions are more popular, since their 
accessibility and flexibility make them “the best option” (Zuur et al. 2009). 

The gam procedure of the SAS System and the gam function of the gam package in R fit 
LOESS and cubic spline smoothing functions, using the backfitting algorithm (Hastie and 
Tibshirani 1986, 1990). The gam function of the mgcv package in R fits cubic spline smoothing 
functions using direct penalized likelihood maximization (Wood 2006). With the gam 
procedure of SAS and the gam function in the mgcv package in R, the number of effective 
degrees of freedom can be determined through cross validation. The gam function of the 
mgcv package can use cross validation when the scale parameter is unknown, and a 
procedure that minimizes an estimate of the expected mean square error when the scale 
parameter is known (Wood 2006a). This function can also fit the smoothing function through 
maximum likelihood or restricted maximum likelihood. 
Treatment-specific curves of varying-coefficient models can be fitted one at a time. Thus, to 
fit Eq. 8, ���� is divided into two parts: ���� � �	��� � �����, where: 

�	��� � 	�	&	��.&	
 � �	�
�&	 ;        (12) 
����� � ��&� � �2&�
 � ���
�&� .       (13) 

Eqs. 12 and 13 can be fitted to the observations of the first and second treatment, 
respectively. The varying-coefficient model can be divided into as many parts as the 
treatment has levels. Thus, with 3 levels, also 3 smoothing functions ��	, 	��, … , �4� must be 
fitted. These smoothing functions might need different degrees of smoothness. Users of the 
mgcv package in R can conveniently use the by option of the gam function for fitting a 
varying-coefficient model in a single step. In the gam procedure of SAS, isotropic thin-plate 
splines (“spline2”) can be fitted for � � 2 explanatory variables. In the gam function of the 
mgcv package in R, isotropic thin-plate regression splines and anisotropic tensor product 
smoothing functions can be fitted for � , 1 explanatory variables (using functions s and te, 
respectively). Note that it might not be necessary to fit smoothing functions for all of the 
model’s explanatory variables. Some of the explanatory variables can be included in 
parametric terms while some other in the smoothing functions. Since we prefer simple 
models than complex ones when the fits are approximately the same, the number of 
smoothing functions should as a rule be kept as small as possible. 

HOW TO ASSESS MODEL FIT 
In LMs and GLMs, parameter estimates constitute a concise description of the fitted 

linear function. But in GAMs, the fitted curve cannot be described by a small set of 



Liew & Forkman – A gu ide to GAM us ing SAS and R 

 

47 

parameter estimates. Instead, it is described graphically by plotting the fitted values against 
the values of the explanatory variable. To show how well the curve fits the observed values, 
they can be included in such a plot. It is easy for models with one explanatory variable, but is 
more complicated for models with several explanatory variables. Partial residuals are useful 
for investigation of explanatory variables (Guisan et al. 2002, Wood 2006). The partial 
residual is the sum of the residual for the whole model and the fitted smoothing function for 
the explanatory variable of interest. In partial residual plots, partial residuals are plotted 
against the values of the explanatory variable. For example, the partial residual plot for the 
first explanatory variable 
	 is a plot of partial residuals, i.e., ��
	� � �, against 
	. Such a 
diagram illustrates the relationship between the dependent variable and the explanatory 
variable, similarly to a scatter plot. When the fit is good, partial residuals are randomly 
distributed around the curve that is described by ��
	�. 

Deviance (5) is twice the difference between the log likelihood (log 6) of the saturated 
model, which corresponds to a perfect fit, and the log likelihood of the fitted model. 
Deviance can be viewed as a generalization of sum of squares, since for a normal 
distribution, deviance equals the error sum of squares. For varying-coefficient models such 
as Eq. 8, deviance can be computed as the sum of the deviances of the treatment-specific 
parts. For example, the deviance of the fit of Eq. 8 is the sum of the deviance of the fits of 
Eqs. 12 and 13. 

For GAMs, as for GLMs, it is possible to determine approximately whether a particular 
explanatory variable is significant or not, by comparing deviances (Hastie and Tibshirani 
1990). The difference in deviance between a model omitting the explanatory variable to be 
tested (i.e., the “reduced model”) and a model including the explanatory variable to be tested 
(i.e., the “full model”) is compared with a chi-square distribution with degrees of freedom 
equal to the difference in degrees of freedom between the two models. Thus: 

χ� � 5�8�&9:�&� � 5�;9<<�        (14) 
is approximately chi-square distributed with degrees of freedom equal to the difference 
between the degrees of freedom (i.e., the sum of effective degrees of freedom and the 
number of all regression coefficients) of the full and the reduced model, i.e., &=�;9<<� �
&=�8�&9:�&�. Wood (2006) justified the use of this method for penalized regression spline 
smoothing functions. When performing these tests, the two models should be nested (i.e., the 
terms of one model should be a subset of the terms of the other model). Consequently, to test 
for interaction between two continuous explanatory variables, the model described by Eq. 10 
cannot be directly compared with the model described by Eq. 9. For hypothesis testing, the 
model including the interaction term must also include the main effects terms. Thus, the 
model 

���� � 	�� � �	�
	� � ���
�� � ��
	, 
��      (15) 
can be compared with the model specified by Eq. 9. When doing this, one must ensure that 
the two models are indeed nested. This requirement is satisfied if a tensor product 
smoothing function is used for the bivariate term in Eq. 15, provided that the marginal 
smoothing functions of the tensor product smoothing function are of the same type as the 
univariate smoothing functions in Eq. 9 (Wood 2006). 

OVERDISPERSION 
Overdispersion occurs when the variance in the observations is greater than expected 

according to the assumed distribution (Olsson 2002). For Poisson distribution, variance 
theoretically equals mean, �, while for Binomial distribution, variance theoretically equals 
+��1 � ��, where + is the number of independent Bernoulli (i.e., yes/no) trials. In practice, 
deviance or sum of squared Pearson residuals should be compared with a chi-square 
distribution with degrees of freedom equal to the number of error degrees of freedom. 
Usually, these quantities agree as to whether overdispersion is present or not.  
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The most used methods for taking overdispersion into account are the same as for GLMs 
(Thurston et al. 2000). In the quasi-likelihood method for Poisson and binomial data, the 
dispersion parameter	>, which for these distributions theoretically equals 1, is estimated 
from the data. The dispersion parameter can be estimated as either the deviance divided by 
the number of degrees of freedom for error or the sum of squared Pearson residuals divided 
by the number of degrees of freedom for error (McCullagh and Nelder 1989, p. 328). 
Statistical tests are adjusted using the estimated dispersion parameter. If >⋆ is the estimator 
of the dispersion parameter	>, then the statistic 

; � @�ABCDEBC�F@�GDHH�
�CI�GDHH�FCI�ABCDEBC��J⋆        (16) 

can be compared with an F-distribution. In the numerator, the number of degrees of freedom 
equals &=�;9<<� � &=�8�&9:�&�, as previously defined. In the denominator, the number of 
degrees of freedom equals the number of degrees of freedom for error of the full model. In a 
GAM, the number of degrees of freedom for error equals the number of observations minus 
the sum of the number of regression coefficients and the number of effective degrees of 
freedom for the whole model. Zuur et al. (2007) suggest F-tests for comparing models when 
overdispersion is present and provide an example of the use of a quasi-Poisson GAM. 

The quasi-likelihood method cannot correct a pattern of residuals (Thurston et al. 2000). 
When a plot of deviance residuals against fitted values indicates that variation increases with 
the mean, a negative binomial distribution can be tried instead of the Poisson distribution. 

BAYESIAN METHODS 
Bayesian methods for smoothing spline functions were introduced by Wahba (1983) and 

Silverman (1985), and are commonly used for assessing uncertainty in fitted GAM curves. 
The penalty term of the penalized least squares criterion (Eq. 5) is used as the Bayesian prior 
distribution, but with a minus sign in front of it so that that smooth curves are believed to be 
more likely than wiggly curves. Given this prior distribution for the model and the 
distribution for the data, the Bayesian posterior distribution for the model is the penalized 
least squares criterion (Eq. 5). The fitted smoothing spline function is the posterior mean in 
this Bayesian formulation. The confidence in the fitted curve can be expressed by Bayesian 
credible bands, which are Bayesian analogs to confidence bands, plotted around the fitted 
curve (Wood 2006a). This option is provided by the gam procedure of the SAS System and 
the gam function of the mgcv package in R. Marra and Wood (2012) studied the performance 
of this Bayesian method and showed, through simulation, that Bayesian credible bands have 
coverage close to nominal levels. By default, the gam function of the mgcv package in R uses 
the Bayesian covariance matrix for hypothesis testing of smoothing functions and parametric 
terms, but the frequentist covariance matrix is also suitable for testing model terms for 
equality to zero (Wood 2006). 

EXAMPLE 
The dataset used in the following example is a sub-sample from a dataset previously 

used by Andersson et al. (2013) to study the seasonal emergence pattern of defoliated plants 
of perennial sow-thistle (Sonchus arvensis L.) with intact root systems. Similar experiments 
have previously been analyzed using categorical data analysis (Brandsæter et al. 2010), 
which models time as a classification factor. The Andersson et al. (2013) dataset consists of 
128 observations from two northern populations (N1, N3) and two southern populations (S1, 
S3) of perennial sow-thistle, made on 12 test dates during one year (2008), as follows: 
 25 observations from N1 (from only nine test dates) 
 32 observations from N3 
 36 observations from S1 
 35 observations from S3 
At each test date, three plants (if available) per population were exhumed, defoliated and 
placed under forcing conditions in a climate room for four weeks. Then, the numbers of 
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emerged shoots were counted. The objective was to study (i) whether the emergence of 
shoots varies over time, (ii) whether the two regions differ in this variation over time, and 
(iii) whether the four populations differ in this variation. The plants were grown in a split-
plot design. The experimental field was divided into three blocks with four rows per block, 
each row constituting a main plot in a split-plot design. Populations were randomized to 
main plots (i.e. rows) within blocks, and test dates were randomized to subplots within main 
plots. The observational unit was plant, and there was no repeated measurement on the 
same sampling unit. In the climate room, the plants were placed in a completely randomized 
manner and then moved around during the four weeks. The complete experiment in 
Andersson et al. (2008) was analysed in SAS version 9.2 (SAS Insitutute, 2008), using the gam 
procedure. In the example provided here, new analyses have been done on the subset of 128 
observations (i.e., the dataset) and complemented with analyses in R. 

ANALYSES IN SAS 
The analyses in SAS were performed in version 9.4 of the SAS System (SAS Institute 

2008). To assess the importance of the main plot error variance, a split-plot model was fitted: 
log	���-K � 1� � L � M� � �- � NK � O-K � P�- � ��-K ,      (17) 

where L is an intercept, M� a random block effect (Q = 1, 2, 3), �- a fixed population effect (R = 

1, 2, 3, 4), NK a fixed date effect (S = 1, 2, ..., 12), O-K a fixed effect of the population-by-date 

interaction, P�- a random main plot effect, and ��-K a random residual error. The random 

effects and the residual errors were assumed to be independent and normally distributed 
with expected value zero. This model was fitted in SAS using the mixed procedure. 

To fit polynomials, we used the genmod procedure for generalized linear models. The 
Poisson distribution was used with log link. To adjust for overdispersion, we used the quasi-
likelihood method. The dispersion parameter was estimated as the sum of squared Pearson 
residuals divided by the number of degrees of freedom for error. We investigated three 
objective procedures for determining the best number of terms for the polynomials: (i) 
forward selection, (ii) backward selection, and (iii) the Akaike information criterion. To find 
the best polynomial model using forward selection, a polynomial of degree zero (i.e., a 
horizontal straight line) was fitted first. Next, a polynomial of degree one, i.e., a straight line, 
was fitted. The slope of this line being non-significant, the polynomial of degree zero was 
selected; otherwise a polynomial of degree two was fitted and the significance of the second-
order term of that polynomial was tested. This second-order term being non-significant, the 
polynomial of degree one was chosen; otherwise a polynomial of degree three was tested. In 
this way, a new term was added to the polynomial until accepting the model because of a 
non-significant last term. To find the best polynomial model using backward selection, a 
polynomial of degree seven was initially fitted. When the genmod procedure did not 
converge or the term of the highest order was not significant according to the adjusted F-test, 
this term was removed from the model. This step-wise reduction of the model was repeated 
until the model converged and the term of the highest order was significant. The genmod 
procedure in SAS offers the Akaike criterion, a popular tool for model selection. The Akaike 
criterion value, which should be as small as possible, is twice the difference between the 
number of parameters and the log likelihood (log 6). To find the best polynomial according to 
the Akaike criterion, all polynomials of degree smaller than eight were investigated. The 
selected polynomial had the smallest value of the criterion. 

GAMs were also fitted, using the gam procedure, with generalized cross-validation and 
with four effective degrees of freedom. In SAS, it is the default option and the program 
automatically includes a parameter expressing the linear effect of the explanatory variable, 
like in Eq. 6. Since this parameter uses one degree of freedom, the smoothing function is 
fitted with three degrees of freedom. To investigate effects of time, region and population, 
four models were compared: (i) a model with an intercept (i.e., with a mean only), (ii) a GAM 
with a single spline term (Eq. 6); (iii) a GAM with two spline terms, one per region (Eq. 8); 
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and (iv) a GAM with four spline terms, one per population. For these analyses, we used SAS 
with the default four effective degrees of freedom method. Box 1 presents SAS code for 
population-specific curves. Due to overdispersion, we needed to employ adjusted 
approximate F-tests (Eq. 16) for inference. Because the gam function in SAS does not provide 
them, we calculated them in Microsoft Excel 2010, based on the output of the GAM analysis 
in SAS (Tables 1 and 2). The p-values were computed using the fdist function in Excel. 

 
Table 1. Deviance output in SAS for n=128 observations analyzed with GAM using 
smoothing functions with four effective degrees of freedom. The complexity of the models, 
i.e., the number of degrees of freedom (df), increases downwards in the table. 

Model Deviance Df 

Only intercept 1963.44   1 
Time     575.928   5 
Time x Region     544.574 10 
Time x Population     443.193 20 

 
Table 2. Results of approximate F-tests (Eq. 16) based on the deviance output in Table 1.  

 Deviance df MS F-ratio p-value 

Only intercept (R) 1387.511     4 346.878 74.08 <0.001 
Time (F)   575.928 123     4.682   
      
Time (R)     31.355     5     6.271   1.36   0.244 
Time x Region (F)   544.574 118     4.615   
      
Time x Region (R)   101.381   10   10.138   2.47   0.011 
Time x Population (F)   443.193 108     4.104   
      
Time (R)   132.737   15     8.849   2.16   0.012 
Time x Population (F)   443.193 108     4.104   

The table includes four comparisons of reduced models (R) with full models (F). For the reduced models, the 
Deviance column displays the difference in deviance (Table 1) between the two fitted models. For full models, the 
Deviance column displays the deviance of the fitted model. For the reduced models, the degrees of freedom (df) 
column displays df(full model) – df(reduced model). For the full models, df = n – df(full model), where n = 128. 
Mean Squares (MS) = Deviance/df, and F-ratio = MS (reduced model)/MS (full model). The F-ratio is compared 
with an F-distribution with degrees of freedom according to the df column, providing an approximate p-value 

ANALYSES IN R 
The analyses in SAS were complemented and compared with some analyses in version 

3.1.1 of R (R Core Team 2012). In R, GAMs were fitted with the gam function of the mgcv 
package, both with generalized cross-validation and with four effective degrees of freedom. 
The results were compared to the same analyses in SAS. For populations N3 and S3, the 
model according to Eq. 6, with three effective degrees of freedom for the smoothing function, 
did not fit the data well in R. For this reason, models without any parameters expressing 
linear functions (available in R, but not in SAS) were fitted in R (i.e., using Eq. 5 with �	 � 0). 
In these analyses, the smoothing function was fitted with four effective degrees of freedom. 
It was obtained by giving the options k = 5 and fx = TRUE in the s function, which is used 
within the gam function. Box 1 provides R code for fitting of population-specific curves with 
four effective degrees of freedom. 
  



Liew & Forkman – A gu ide to GAM us ing SAS and R 

 

51 

RESULTS 
In the split-plot analysis, the block variance, the main plot error variance, and the subplot 

error variance were estimated as 0.0020, 0.0072 and 0.3016, respectively. The main plot error 
variance was small compared with the subplot error variance. 

Figure 1 shows the results of the population-wise analyses to find the best polynomial 
model in SAS. Using forward selection, polynomials of degree one were chosen for 
populations N3, S1, and S3. However, using backward selection, polynomials of degree six 
were needed for populations N3 and S3, and a polynomial of degree four was needed for 
population S1. Use of forward and backward selection resulted in the same conclusion only 
for population N1, for which a third-order polynomial fitted the data best. For populations 
N3 and S3, backward selection gave predictions far from real observations. Obviously, these 
curves did not fit the data well. The AIC criterion resulted in polynomials of small orders: 
degree one for population N1, degree two for populations N3 and S3, and degree zero for 
population S1. Because of the logarithmic link function, the polynomials of degree one did 
not look like straight lines when presented on the original scale (Figure 1). Figure 2 shows 
the GAM fits using the generalized cross-validation methods of SAS and R. The two software 
packages produced the same curve only for population N1. For the other populations, SAS 
gave curves with much larger fluctuations than R. Curves fitted with generalized cross-
validation in SAS failed to represent the biological phenomena in the studied example. The 
generalized cross-validation in SAS resulted in curves that showed pronounced peaks in 
areas without any observations. 

 

Box 1. R and SAS code for fitting population-specific curves with four effective degrees of 
freedom. 

R code 

Model.Pop <- gam(shoot ~ factor(Pop) + s(skord, k = 5, fx = T, 

by = factor(Pop)), family = poisson, data = Four.pop) 

summary(Model.Pop) 

Model.Pop$deviance 

SAS code 

 

proc gam data = PopS1 ; 

 model Shoot = spline(Skord) / dist = Poisson   ; 

 output out = Pred ; 

run ; * Deviance =   170.05406604, 5 df, 36 obs ; 

 

proc gam data = PopS3 ; 

 model Shoot =  spline(Skord) / dist = Poisson   ; 

 output out = Pred ; 

run ; * Deviance =   119.79814787, 5 df, 35 obs ; 

 

proc gam data = PopN1 ; 

 model Shoot =  spline(Skord) / dist = Poisson   ; 

 output out = Pred ; 

run ; * Deviance =   57.236398516, 5 df, 25 obs ; 

 

proc gam data = PopN3 ; 

 model Shoot =  spline(Skord) / dist = Poisson   ; 

 output out = Pred ; 

run ; * Deviance =   96.104344253, 5 df, 32 obs ; 

 

* Total deviance = 170.05406604 + 119.79814787 + 57.236398516 +    

96.104344253 = 443.193, 20 df. ; 
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Figure 3 shows polynomials of degree four and GAMs using four effective degrees of 
freedom. Besides population N1, SAS and R gave different results. For populations N3, S1, 
and S3, the SAS curves obtained using four effective degrees of freedom (Figure 3) fitted the 
observations better than the corresponding SAS curves fitted using generalized cross-
validation (Figure 2). Differences between fits based on four effective degrees of freedom and 
generalized cross-validation were less pronounced in R. All models illustrated in Figure 3 
captured the biologically interesting decrease in emergence in September, followed by a 
period of low emergence until the rate recovered again in November–December. For 
population N3, the polynomial seemed to predict too sharp a bend towards the end of the 
period, at about 45 emerged shoots. The curves produced by R were similar to the 
polynomials, but with less pronounced fluctuations. In our opinion, the curves obtained 
using SAS were more realistic from the biological point of view. 

Deviance output and the approximate F-tests resulting from the GAM analysis in SAS 
are shown in Tables 1 and 2. The effect of time was clear because a model with a single curve 
fitted the data significantly better (P < 0.001) than a model with only an intercept. A model 
with region-specific curves did not fit the data significantly better (P = 0.244) than the model 
with a single curve. However, a model with population-specific curves fitted the 
observations significantly better (P = 0.011) than a model with region-specific curves. The 
model with population-specific curves was significantly better (P = 0.012) than the model 
with only a single curve. Thus, the best model, according to this analysis in SAS, can be 
described by the four solid curves shown in Figure 3. It can be noted that the corresponding 
analysis using R led to the same conclusion, i.e., population-specific curves fitted the 
observations significantly better than a single or two region-specific curves. 

 

Figure 1. Best polynomials determined by forward and backward selection and using the 
Akaike information criterion for perennial sow-thistle populations N1, N3, S1, and S3. 
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Figure 2. Population-specific GAMs using the generalized cross-validation method of SAS 
procedure gam for perennial sow-thistle populations N1, N3, S1, and S3. 

 

Figure 3. Fourth-degree polynomials compared with GAMs fitted in SAS and R with four 
effective degrees of freedom for perennial sow-thistle populations N1, N3, S1, and S3. 
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CONCLUSIONS 

This paper deals with GAMs used for comparing experimental treatments when the 
response variable is a function of one or more explanatory variables. Although there are 
good introductions to GAMs and other statistical models using the open source software R 
(such as Zuur et al. 2009 and Everitt and Hothorn 2010), there is, to our knowledge, nothing 
similar for SAS (apart from SAS Institute 2008). Publications using GAMs for statistical 
analysis of field experiments are rare. The present paper added a comparison of GAM 
analyses performed in SAS and R. 

The GAM curves fitted in SAS and R can differ. In the example provided here, 
generalized cross validation performed poorly in SAS, since it produced curves with sharp 
bends in areas without observations. This is worrying. With a fixed number of effective 
degrees of freedom, however, SAS produced curves that were slightly more realistic than 
those produced by R. Based on a small example we will not generalize our conclusions on 
which of the software program is better. However, it should be pointed out that the 
functions in R have many more options than the gam procedure of the SAS System. 

The example provided here illustrated that the procedure of selecting the degree of 
smoothness is not well established yet. A similar problem sometimes arises when fitting 
linear models. For example, a third-degree polynomial may fit data significantly better than 
a second-degree polynomial although the second-degree polynomial does not fit the data 
significantly better than a straight line. Furthermore, information criteria such as the Akaike 
information criterion may lead to other conclusions on the model choice than hypothesis 
testing using forward or backward selection. In the example provided here, the analysis 
supported the recommendation of Hastie and Tibshirani (1990) to use 3–5 effective degrees 
of freedom to estimate the smoothing parameter. We believe that in general the number of 
effective degrees of freedom must be determined from data. The fit of the curve should 
always be investigated graphically. Cross-validation methods should not be relied upon 
blindly. 

Statistical tests for comparing GAMs are the same as for GLMs. In GLMs, the chi-square 
test (Eq. 14) and the F-test (Eq. 16) are approximate. However, the performance of the tests 
for GAMs is more questionable, since the number of degrees of freedom is not exact. There is 
a risk that the tests are too generous in providing significant results, leading to an over-fitted 
final model. The curves fitted with penalized maximum likelihood are not maximum 
likelihood solutions. To overcome these problems, Wood (2006) proposed testing hypotheses 
using un-penalized fits of functions with fixed smoothing parameters. At the same time, 
however, fitted curves based on cross-validation and penalized likelihood method are 
reported. Since this mismatch can mislead, in our view it is better to report approximate p-
values, but interpret them with care. In particular, one should remember that p-values 
slightly below the significance level might not indicate significant effects. More research is 
needed on the performance of significance tests for GAMs. 

In the example, random effects of rows were not included in the model, while 
overdispersion was accounted for through the use of approximate F-tests. As was noted, the 
main plot error variance was small compared with the subplot error variance. For this 
reason, the loss by ignoring random effects of main plots was probably small, even 
negligible. Generalized additive mixed models, i.e., GAMs with random effects, can be fitted 
in SAS (procedure glimmix) and R (function gamm). Within these procedures, one can also 
specify correlation structures for modeling temporal or spatial covariance. However, simple 
models are recommended, because numerical estimation problems can occur (Zuur et al. 
2009, p. 323). Verbyla et al. (1999) showed how to analyze designed experiments using 
generalized additive mixed models and the software ASReml. 

Data transformations can sometimes linearize relationships. This method should be 
preferred to GAMs when applicable because it makes inference easier (Yee and Mitchell 
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1991). For the same reason, we believe that polynomials should be preferred to GAMs when 
the polynomials fit the data well. However, biological data are often complex, and fitted 
polynomials often describe them poorly, typically with amplified bends outside the scatter of 
observations. Despite all the problems connected with GAMs mentioned above, we 
encourage increased use of these powerful models. We recommend the use of GAMs when 
the primary aim is to illustrate biological processes while statistical testing is secondary. For 
the ease of the beginner, Box 2 offers a short practical guide for GAM analyses. 
 

Box 2. For non-statisticians active in biological research, terms used in statistical text books 
and journals are sometimes difficult to understand. The following list highlights some basic 
steps and considerations when evaluating biological data with GAM. The list is not 
complete, but may work as a starting point for the beginner. 

The beginner’s guide to GAM analyses 
Plot your data! As always, this will give you a first idea of what kind of statistical model to 
use. If possible, and if statistical testing is primary, use polynomials or other linear or 
generalized linear models. If such models fit the data poorly and the aim is to illustrate a 
complex biological process, consider using a GAM. 
Choose statistical software. Many software programs cannot perform GAM analyses. 
Choose a distribution. Continuous variables are usually modelled using the normal 
distribution, but the gamma distribution is another option when the data can take only 
positive values. Counts are usually assumed to be Poisson distributed. The binomial 
distribution is usually assumed for proportions and when two outcomes (such as 
dead/alive, or yes/no) are possible. 
Choose a link. The most common choices are the identity link for the normal distribution, 
the log link for the Poisson distribution, and the logit link for the binomial distribution. 
Choose the type of smoothing function. This choice may be restricted by the options 
available in the chosen software. Nowadays, smoothing splines based on penalized 
likelihood are often preferred. 
Choose the smoothing parameter. Using smoothing splines, the smoothing parameter is 
chosen through the choice of effective degrees of freedom. Use a software integrated 
smoothness estimator, e.g., cross validation, or find an appropriate number through 
graphical examination. 
Check the residuals. This can be done in the same manner as for GLMs. Plots of deviance 
residuals vs fitted values should be free from patterns. 
Check for collinearity and concurvity. Plot the explanatory variables against each other and 
study the correlation matrix. When some variables are highly correlated (i.e. collinearity), 
consider using only one of them. If one of the variables can be well described by a smooth 
function of another (i.e., concurvity occurs), then consider using only the other variable. 
Look for overdispersion. Oversdispersion takes place when the variance of the observations 
is larger than expected according to the assumed distribution. In case of severe 
overdispersion, consider to use another model or distribution. 
Hypothesis testing and inference. A reduced model can be compared with a full model, 
using an approximate chi-square test (Eq. 14). For overdispersed data, the approximate F-test 
(Eq. 16) can be used instead. Keep in mind that these tests are approximate. 
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