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ABSTRACT 
The AR(1) and power models of spatial correlation are popular in the analysis of field trial data. 
Numerical difficulties in estimation and interpretation of these models may occur when the 
autocorrelation parameter ρ  tends to either zero or unity. These problems are considered here using 

three different examples. The first example is based on simulated data for a partially replicated design, 
where the true underlying variance-covariance structure is known. The other two examples involve real 
data from a precision farming trial and a plant breeding trial. We suggest four options to deal with the 
observed numerical problems and illustrate their use with the examples. It is shown in the examples that 
re-scaling of the spatial coordinates or a re-parameterization of the AR(1) model as an exponential model 
can be useful to help the model converge. We conclude that individual parameter estimates of the AR(1) 
model should be interpreted with care, especially when the autocorrelation estimate is close to either zero 
or unity. 

Key Words: precision farming; convergence problems; autoregressive model; autocorrelation; partially 
replicated design; linear variance model. 

 
 

INTRODUCTION 

Spatial variance-covariance structures embedded in a mixed model framework have 
become popular in the analysis of field trials (Gilmour et al. 1997, Piepho et al. 2008, 
Gonçalves et al. 2010). Most common spatial models assume a non-linear decay of the spatial 
correlation with distance. In a randomized experiment with a single observation per plot, a 
spatial correlation may be assumed between plots in the same block (Williams 1986). 
Similarly, in on-farm trials with large plots, many spatially referenced measurements (i.e., 
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measurements for which spatial coordinates are recorded) may be available per plot, with 
associated covariate information. A full analysis of such trials requires accounting for the 
spatial variation among repeated measurements in the same plot (Piepho et al. 2011). 

A very popular non-linear spatial model for field trials with equally spaced plots is the 
first-order autoregressive [AR(1)] model. The model implies an exponential decay of the 
correlation with spatial distance, measured in terms of the lag distance between plots, equal 
to the number of intermittent plots plus one. The model can also be extended into two 
dimensions, the most popular variant being the separable AR(1) ⊗ AR(1) model (Gilmour et 
al., 1997). 

When repeated observations are available per plot, as is often the case in precision 
farming experiments, observations will usually be irregularly spaced, not forming an exact 
rectangular grid (Piepho et al. 2011). The AR(1) model is not applicable with such 
experiments because it requires equal spacing. However, the AR(1) model can be readily 
extended to unequally spaced measurements, as either the so-called power model or the 
exponential model (Gotway and Schabenberger 2004). These two models are different 
parameterizations of essentially the same model (see below). 

Frequently, numerical problems are encountered when trying to fit non-linear spatial 
models to field trial data based on residual maximum likelihood (REML), using various 
statistical packages offering mixed-model analysis. For example, the REML algorithm may 
fail to converge, or the final Hessian matrix may fail to be non-positive definite. In this paper 
we consider such problems with AR(1) and power models and look at possible remedies to 
achieve convergence to a proper solution. Interpretation of parameter estimates is also 
considered. Three different examples are used to illustrate typical problems met in practice, 
and possible solutions are discussed. The first example is based on simulated data for a 
partially replicated (p-rep) design (Cullis et al. 2006, Williams et al. 2011, 2014), whereas the 
other two examples involve real data from a precision farming trial and a plant breeding 
trial. 

The paper is organized as follows. First we introduce the three examples. Next, we 
describe the spatial models. This is followed by a brief description of potential problems 
when trying to fit these models, possible measures for trouble shooting in case of 
convergence problems, and an application to the three examples. The paper ends with a brief 
discussion and our recommendations. 

DESCRIPTION OF EXAMPLES 

Example 1: We generated a p-rep design for 300 treatments, five locations and a final 
block size of nine, where three plots per block are devoted to replicated treatments. This was 
done using the software CycDesigN 5.1 (VSN International; http://www.vsni.co.uk/), 
which uses a combination of theory, based on upper bounds for the average efficiency factor, 
and numerical search to generate an optimal or near-optimal design (John and Williams 
1995, Williams et al. 2014). Data were simulated according to this design, generating random 
effects for blocks and plot errors, i.e., there was no spatial correlation within blocks. These 
data were generated to put spatial models to a hard test in that the true spatial correlation 
was zero within blocks, which is likely to cause numerical problems of convergence when 
trying to fit models with a spatial correlation. Plots of each block were assumed to be 
arranged as a single column of plots. Thus the AR(1) model for correlations among plots in a 
block can be applied, and its properties can be studied in the limiting case of no real spatial 
correlation within blocks.  

Example 2: An on-farm oilseed rape trial was conducted at the location Ihinger Hof 
(Universität Hohenheim, Agricultural Experimental Station, Germany). The experiment was 
laid out in randomized complete blocks with six replicates. On each plot, a large number of 
yield measurements were recorded using an online monitoring system (e.g., 252 
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measurements on the first plot), together with the spatial coordinates (degrees WGS84). The 
treatment factors were tillage method (three levels) and fertilization method (two levels). 
Five of the six factorial treatment combinations were tested. At each spatial position, a 
fertility score, called “Ackerzahl”, was also recorded. This score assesses the soil quality and 
subsumes several environmental factors such as soil type, climatic conditions, and landscape 
characteristics (Schachtschabel et al. 1976). The dataset had a total of 4569 observations. 

The analysis aimed to compare the five treatments using the fertility score as a covariate. 
It was thus necessary to model the covariance among repeated recordings per plot. To 
illustrate potential problems with spatial models, here we report results of such analyses 
without this covariate. A complete analysis will be published elsewhere. The measurements 
within a plot are irregularly spaced so an AR(1) model cannot be used. Instead we will use 
an isotropic power model for the correlation of measurements within the same plot; the 
model is described below. Observations from different plots are considered independent 
because plots are randomization units. Randomization units are experimental units to which 
levels of a treatment factor are randomly assigned, such as plots in a randomized block 
experiment or main plots in a split-plot experiment. 

Example 3: We consider a wheat trial from South Australia used in Gilmour et al. (1997). 
The trial comprises 107 varieties sown in three replicates (a replicate was a complete block). 
Three of these varieties were sown twice per replicate so each replicate had 110 plots 
arranged as a regular two-dimensional grid of five columns and 22 rows. Gilmour et al. 
(1997) do not give details of the randomization scheme applied within replicates. From their 
Table 1 it appears that there was some systematic arrangement in the first replicate, so the 
allocation of entries to plots within replicates does not seem to have been entirely at random. 
The example is used here to study the behaviour of various one- and two-dimensional AR(1) 
models. 

THE POWER AND AR(1) MODELS 

First, in Example 1 we will develop models for a single column (block) of equally spaced 
plots. Then, in Example 2 we will discuss extension to isotropic models for two dimensions 
with possibly unequally spaced data, in which the mode of covariance decay is the same in 
each spatial direction. Finally, in Example 3 we will consider an anisotropic extension of the 
AR(1) model to two-dimensional regular grids. 

The randomisation-based model: For simplicity of exposition, let us consider a single 
(say, the j-th) block of size k. For the j-th block the error terms for the plots are denoted as 

( )kieij ,...,1=  and may be collected into a vector ( )T

kjj ee ,...,1=je . Under a randomization-

based model, the errors are assumed to be identically independently distributed (i.i.d.), so 
that  

( )
kj Ie

2var σ= ,  (1) 

where 2σ  is the error variance and kΙΙΙΙ  is a k-dimensional identity matrix. 

In a randomization-based model we also need to account for a block effect bj. Thus, 
ignoring treatment effects for simplicity, the observed data yij can be modelled as 

ijjij eby += . (2) 

Collecting the observed data ijy  of the j-th block into a random vector ( )T

kjj yy ,...,1=jy  

and taking block effects as random with variance 2

bσ , we have the following variance-

covariance structure for the data: 

( ) kkj IJy 22var σσ += b , (3) 

 

where kJ  is a kk ×  matrix of ones. 
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The power model without nugget: Instead of independent errors, we may assume that 
errors are serially correlated according to the power model (Gotway and Schabenberger, 
2004). This has the variance-covariance structure 

( ) ( ){ } ΩΩΩΩ2,2var s

iid

s σρσ == ′
je , (4) 

where ρ  ( )10 << ρ  is the autocorrelation parameter, ( )iid ′,  is the Euclidean distance 

between plots i and i′  measured in either one of two dimensions, and 2

sσ  is the spatial 

variance. The variance of the data is then given by 

( ) ΩΩΩΩ22var sb σσ += kj Jy . (5) 

When the k plots are equally spaced down a single column (Example 1), the distance can be 

assessed based on plot indices i , and the distance takes the form ( ) iiiid ′−=′, . The 

correlation matrix is then given by 
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This model is known as the autoregressive first-order [AR(1)] model, which is a special case 
of the power model.  

When plots are unequally spaced and the coordinates are possibly two-dimensional, the 

more general definition ( ){ }iid ′= ,ρΩΩΩΩ  can still be applied if isotropy is assumed. This also 

applies when repeated measurements are taken on the same plot using online monitoring 
systems, as is common in precision-farming experiments (Piepho et al. 2011). In this case, we 
can identify the random effect bj in the basic model (2) with the j-th plot, assuming that plots 

are the randomization units of the experiment whereas errors ije  represent the spatially 

referenced repeated measurements taken within the same plot (Example 2). 
The power model with nugget: In addition to the spatially correlated term, we may add 

an independent term (nugget), leading to this model: 

( ) kj Ie 22var σσ += ΩΩΩΩs . (7) 

The nugget term may capture true measurement error as well as random small-scale 
heterogeneity of soil fertility. The variance of the data is equal to 

( ) kkj IJy 222var σσσ ++= ΩΩΩΩsb . (8) 

PROBLEMS WITH FITTING THE POWER MODEL 

If the serial correlation ρ  converges to unity, the spatial component of power model 

converges to kJ
22

ss σσ =ΩΩΩΩ , in which case the spatial component and the random block effect 

are confounded. Conversely, if the correlation ρ  converges to zero, the spatial component 

converges to kI22

ss σσ =ΩΩΩΩ  and hence is confounded with the nugget term kI2σ . In both 

these situations, convergence problems may arise due to confounding of the correlation with 
other parameters of the variance-covariance structure, as has been reported repeatedly (e.g., 
Piepho and Williams 2010, Piepho et al. 2013, Richter et al. 2015). Illustrations of these 
problems will be given in the examples. 

It is worth pointing out that problems similar to those described here for the AR(1) and 
power models can also arise when the spatial correlation matrix is replaced by some other 
nonlinear model such as the Gaussian or spherical. In the next section, we list options to 
tackle the problems with the AR(1) and power models. 
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TROUBLE SHOOTING IN CASE OF CONVERGENCE PROBLEMS 

Apart from trying several starting values or a systematic grid of starting values for the 
variance parameters, the following options may be considered for achieving convergence 
with a power model. 

Option 1: The spatial coordinates may be rescaled to change the value of the 
autocorrelation parameter away from the problematic boundary values 0 and 1. For 

simplicity we drop the plot indices and consider the correlation term dρ  for a given distance 

d. If the distance metric is rescaled so that the distance d is replaced by cdd =
~

 for some 
constant 0>c , then  

dd
~~ρρ = , (9) 

where c/1~ ρρ = . If the autocorrelation 1≈ρ , we may choose  1<<c  (but still 0>c ) so that 

the new correlation parameter ρ~  is well below the upper bound of unity. When 0≈ρ , we 

may choose 1>>c , thus ensuring that ρ~  is well above the lower bound of zero. 

Option 2: The autocorrelation may be parameterized by an exponential function 

 ( )θρ −= exp  with 0>θ , such that 

( )[ ] ( )d
dd θθρ −=−= expexp . (10) 

Similarly, we may re-parameterize the autocorrelation as ( )θρ /1exp −=  with 0>θ , such 

that 

( )[ ] ( )θθρ /exp/1exp d
dd −=−= . (11) 

The exponential model given in equation (11) is the one implemented in the SAS mixed 
model procedures MIXED and GLIMMIX. In addition to the exponential re-
parameterization, it may also be necessary to re-scale the distance as in Option 1 to 
circumvent convergence problems when either 0≈θ  or ∞→θ . In the exponential model 

(11), we can replace the distance d by cdd =
~

, so that ( ) ( )θθ
~

/
~

exp/exp dd −=−  with 

θθ c=
~

. Thus, for instance when 0≈θ  ( 0≈ρ ), we can choose 1>>c  so that 0
~

>>θ . 

Conversely, when θ  is very large ( 1≈ρ ), we may set 1<<c  (but still 0>c ). 

Option 3: We may set bounds on estimates of the correlation parameter so that critical 
boundary values cannot be reached during REML iterations; for example, we may choose to 

require 9999.0ˆ0001.0 << ρ  (e.g., Piepho et al. 2013). This option is implemented in some 

packages, e.g., ASReml and GenStat (VSN International; http://www.vsni.co.uk/). It is less 
suitable when the true value of the autocorrelation is so close to one of the theoretical 
boundaries 0 and 1 that the numerical bounds imposed for iterations cause non-negligible 
bias. 

Option 4: We can approximate the AR(1) model (or any other non-linear spatial model) 
by using a linear variance (LV) model (Williams 1986). Over short distances, such as among 
plots in small blocks of a field trial, this approximation often works very well, and 
convergence problems are much less likely because the variance-covariance structure is 
linear in the parameters. In particular, as opposed to the AR(1) model, there can be no 
confounding of the spatial component with the nugget or block variance (Piepho et al. 2008, 
Piepho and Williams 2010). The approximation is particularly well suited when the 
autocorrelation under an AR(1) model is close to unity. In this case, from a first-order Taylor 

series approximation it follows that ( ) ii
ii ′−+≈′− ρρ log1 , which is linear in the spatial 

distance ii ′−  (Piepho and Williams 2010). Note that ( ) 0log ≤ρ  because 1≤ρ , so the 

correlation decays with distance also under the linear approximation.   
Under the LV model, using a parameterization that ensures non-negative definiteness, 

the variance-covariance matrix of the data can be expressed as 
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( )
kkkjy IΜJ 22var σφσ ++= b , (12) 

where the ( )ii ′, -th element of kΜ  is equal to ( ) iik ′−−−1  (Piepho and Williams 2010). The 

spatial component only has a single parameter (φ ), as opposed to two for the AR(1) model. 

ANALYSIS OF EXAMPLES 

In Example 1 we deal with one-dimensional AR(1) models applied to blocks of plots 
equally spaced down single columns. In Example 2 we study the behaviour of the power 
model used to model spatial covariance of repeated measurements within independent plots. 
Then, in Example 3, we consider anisotropic two-dimensional AR(1) models. For all 
analyses, we used the MIXED procedure of SAS Version 9.3 (TS1M0). 

Example 1: Data for the 200 blocks of size nine in the p-rep design were simulated 

assuming the variance-covariance model (3) with 122 == σσ b . Simulated responses were 

rounded to four decimal places. This simulation model puts the AR(1) model with nugget to 
a hard test because it is expected to produce cases with confounding of the autocorrelation 
with the nugget of the block variance from either 0→ρ  or 1→ρ , respectively. The 

following starting values were provided for the parameters: 12 =bσ , 5.022 == σσ s  and 

9.0,...,2.0,1.0=ρ . By trial and error we identified seeds for the random number generator 

in order that this problem occurred. The datasets generated and the program code with the 
specific seed values for the random number generator are provided in the Supplemental 
Material. The model used for analysis had fixed effects for treatments and replicates within 
locations and random effects for blocks within replicates. Furthermore, in all analyses the 
variance-covariance structure for plot errors in the same block was assumed to have a nugget 
component as well as a spatial component following a power model. 

In the analysis of the first simulated dataset (C2274; dataset names just follow an internal 
labelling of datasets we generated and have no particular meaning), the correlation moved 
towards zero in iterations. The REML algorithm converges after 34 iterations with a warning 
message that the final Hessian is not positive definite. The estimated asymptotic correlation 

matrix of the parameter vector ( )222 ,,, σρσσ sb=ϑϑϑϑ  based on the observed information is 

shown in Table 1, together with the parameter estimates. The asymptotic correlation of 

−0.9905 between the estimates of 2

sσ  and 2σ  indicates that the two parameters are 

confounded. When fitting the exponential parameterization, the numerical difficulties 
vanish, and the algorithm converges without a warning message pointing to problems with 

the final Hessian matrix, but the asymptotic correlation among the estimates of 2

sσ  and 2σ  

remains about the same (Table 2). Also, the power and exponential spatial models yield 

about the same likelihood (−2 log L = 5181.7) (log L = logarithm of the maximized residual 
likelihood) as the model with only block and error variance (−2 log L = 5182.4). Regardless of 
parameterization of the spatial model, the estimated nugget variance is tiny, although in the 
simulating model the nugget variance equals unity. This apparent negligibility of the nugget 
variance results from the confounding with the spatial variance due to the small correlation 
estimate, which implies a very rapid decay of correlation with spatial distance. 
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Table 1. Estimates of variance parameters for dataset C2274 (Example 1) and AR(1) model 
with nugget and corresponding asymptotic variance-covariance matrix based on the 

observed information (−2 log L = 5181.7). 

Parameter Estimate Asymptotic correlation matrix of parameter estimates 
2

bσ  2

sσ  ρ  2σ  

2

bσ  1.1526 1 −0.00784 −0.05937   0.000594 

2

sσ  0.9598    1 −0.1939 −0.9905 

ρ  0.02953     1   0.2281 
2σ  0.001948      1 

 
Table 2. Estimates of variance parameters for dataset C2274 (Example 1) and exponential 
model with nugget and corresponding asymptotic variance-covariance matrix based on the 
observed information (−2 log L = 5181.7). 

Parameter Estimate Asymptotic correlation matrix of parameter estimates 
2

bσ  2

sσ  θ  2σ  

2

bσ  1.1526 1 −0.03128 −0.05455   0.02393 

2

sσ  0.9600    1 −0.1783 −0.9895 

θ  0.2838     1   0.2143 
2σ  0.001804      1 

 
For the dataset C2274, the autocorrelation did not converge to zero. But in a second 

dataset C2288 the autocorrelation did converge to zero (Table 3), again with a non-positive 
definite final Hessian matrix. Also, in this case the problem of the non-positive-definite 
Hessian does not vanish with the exponential parameterization (Table 4). Probably the best 
solution in this case is to drop the spatial component from the model. This is supported by 
comparison of the reported values of −2 log L, which equal 5237.5 for the models with and 
without the spatial component. 
 
Table 3. Estimates of variance parameters for dataset C2288 (Example 1) and AR(1) model 
with nugget and corresponding asymptotic variance-covariance matrix based on the 

observed information (−2 log L = 5237.5). 

Parameter Estimate Asymptotic correlation matrix of parameter estimates 
2

bσ  2

sσ  ρ  2σ  

2

bσ  0.9064 1 −0.05088 - - 

2

sσ  0.5686    1 - - 

ρ  0   - - 
2σ  0.4589    - 
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Table 4. Estimates of variance parameters for dataset C2288 (Example 1) and exponential 
model with nugget and corresponding asymptotic variance-covariance matrix based on the 

observed information (−2 log L = 5237.5). 

Parameter Estimate Asymptotic correlation matrix of parameter estimates 
2

bσ  2

sσ  θ  2σ  

2

bσ  0.9064 1 −0.05088 −0.00013 - 

2

sσ  0.4873    1   0.000314 - 

θ  0.06677     1 - 
2σ  0.5402    - 

 
The third simulated dataset (C2373) produces a spatial correlation estimate close to unity, 

with the block variance converging to zero (Table 5). There are no convergence problems. 
This result seemingly suggests that the AR(1) component of the model is very important, 
whereas there is no block effect. By contrast, the randomization-based analysis, in which the 

AR(1) component is not used, yields a block variance estimate of 9344.0ˆ 2 =bσ  (−2 log L = 

5180.5), which is not far-off the spatial variance under the AR(1) model ( 9538.0ˆ 2 =sσ ). This 

example, with very contrasting block variance estimates depending on whether or not the 
AR(1) component is added on, illustrates the possible confounding of spatial component and 
block variance. 
 
Table 5. Estimates of variance parameters for dataset C2373 (Example 1) and AR(1) model 
with nugget and corresponding asymptotic variance-covariance matrix based on the 

observed information (−2 log L = 5180.0). 

Parameter Estimate Asymptotic correlation matrix of parameter estimates 
2

bσ  2

sσ  ρ  2σ  

2

bσ  0 - - - - 

2

sσ  0.9538  1 −0.1989 −0.1942 

ρ  0.9945     1   0.5646 
2σ  0.9628      1 

 
Table 6. Estimates of variance parameters for dataset C2295 (Example 1) and exponential 
model with nugget and corresponding asymptotic variance-covariance matrix based on the 
observed information (-2 log L = 5155.5). 

Parameter Estimate Asymptotic correlation matrix of parameter estimates 
2

bσ  2

sσ  θ  2σ  

2

bσ    0 - - - - 

2

sσ    0.8049  1 −0.2156 −0.2366 

θ  83.6057     1   0.5672 
2σ    0.9546      1 

 
Finally, when trying to fit the power model to the fourth simulated dataset C2295, the 

procedure stops after 49 iterations with a “Did not converge” warning message. Because of 
the lack of convergence, no final Hessian matrix is produced. At the last iteration, the 

parameter estimates were 0ˆ 2 =bσ , 8049.0ˆ 2 =sσ , 9881.0ˆ =ρ  and 9546.0ˆ 2 =σ . Again, the 
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spatial component moves towards the block effect component, which causes the convergence 
problem. Switching to the exponential parameterization, convergence is achieved (Table 6) 
with an equivalent model fit. 

For all four datasets, we also fitted the linear variance (LV) model (12). This converged 
with very few iterations and without problems in all four cases. The model fitting 
information is shown in Table 7, including the values of the Akaike Information Criterion 

(AIC = −2 log L + 2p, where L is the restricted likelihood and p is the number of variance 
parameters) for the LV and AR(1) models. The AIC values show that both models give very 
similar fits in the first case (C2274) and virtually identical fits in the remaining three cases. 
 
Table 7. Fit of linear variance model (LV) for the four artificial datasets of Example 1. 

Parameter/ 

Criterion# 

Dataset 

C2274 C2288 C2273 C2295 
2

bσ  1.1481 0.9064 0.9120 0.7307 

φ  0.002551 0 0.005206 0.009210 
2σ  0.9467 1.0275 0.9629 0.9552 

AIC(LV) 5182.3 5237.5 5180.0 5155.5 
AIC[AR(1)] 5181.7 5237.5 5180.0 5155.5 

# AIC = Akaike Information Criterion 
 

Example 2: We use this example to illustrate Options 1 and 2 for tackling convergence 
problems. Our baseline model had fixed effects for treatments and blocks, and a simple 
random effect (bj) for plots reflecting the fact that plots were the randomization units. It is 
because the plots were randomization units that the data from different plots were modelled 

to be uncorrelated in all our analyses (Piepho et al. 2011). The residual error term ije  

modelled the variation among repeated measurements on the same plot and was initially 
modelled as independent. This model had an AIC value of 4083.4. We then tried to fit a 
power model for the correlation among observations in the same plot without a nugget 
variance. In all analyses, three different starting values were provided for the autocorrelation 
(0.1, 0.5 and 0.9). Using these starting values with the MIXED procedure of SAS®, this model 
did not converge. After multiplying both spatial coordinates by a factor of 104, we were able 

to achieve convergence, the spatial correlation estimate ( 01245.0~̂ =ρ ) taking on a value well 

away from the problematic boundary value of 0 (Table 8). The fitted correlation for the 
transformed coordinates corresponds to the correlation estimate 

001245.0~̂ˆ 1000010000 ≈== ρρ  for the original coordinates, which explains the convergence 

problems on that scale. The fitted model implied a strong spatial correlation only for short 
distances. For instance, the first plot had 252 observations. The largest pairwise correlation 
for adjacent measurements was 0.322, the 95% quantile of all correlations was 0.00964, and 
the median of all correlations was effectively zero. Hence, for the vast majority of pairs of 
observations the correlation is virtually zero, and it is therefore not surprising that up to the 
first decimal place this spatial model had the same AIC as the model with independent errors 
(Table 8). 

Similar numerical problems were observed when a nugget variance was added to the 
model. With the original coordinates, the algorithm stopped after 41 iterations with no 
proper convergence. After multiplying the coordinates by 104, we found a solution, again 

with the correlation well away from the boundaries ( 08587.0~̂ =ρ ). According to AIC, this 

spatial model with nugget fitted better than the independent model (Table 8). From this 
solution the correlation on the original scale can be estimated 
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as 008587.0~̂ˆ 1000010000 ≈== ρρ , which is very close to the boundary of the parameter space, 

again explaining the convergence problems when the original spatial coordinates were used.  
We also tried the exponential model (11). Starting values for the exponential parameter θ  

were 0.1, 1, 10 and 100. Without nugget and the original coordinates, the REML algorithm 
converged to the baseline model. Multiplying the coordinates by a factor of 104, a different 
solution was found for the exponential model, this time equivalent to that obtained for the 
power model. When a nugget was added, the model converged right away with the original 
coordinates, so a re-scaling was not necessary (but for the re-scaled coordinates we obtained 
the same fit). 
 
Table 8. Parameter estimates, likelihood criteria for different models fitted to on-farm trial 
data (Example 2). 

Model$ Spatial 
coordinates 

2

bσ  
2σ  

2

sσ  ρ  or ρ~  θ  or θ
~

 −2 log L# AIC§ 

Baseline 
 
 

- 0.01660 0.1321 - - - 4079.4 4083.4 

POW 
without 
nugget 

Original 0.01660 - 0.1321 0 - 4079.4 4083.4 

POW 
without 
nugget 

Original  
× 104 

0.01502 - 0.1322 0.01245 - 3486.2 3492.2 

POW 
with 
nugget 

Original 0.01321 0.0859 0.5949 0 - Did not 
converge 

- 

POW 
with 
nugget 

Original  
× 104 

0 0.0664 0.0954 0.08587 - 2011.7 2017.7 

EXP 
without 
nugget 

Original 0.01660 - 0.1321 - 0 4079.4 4083.4 

EXP 
without 
nugget 

Original  

× 104 

0.01502 - 0.1322 - 0.2280 3486.2 3492.2 

EXP 
with 
nugget 

Original 0 0.0664 0.0954 - 0.000656 2011.7 2017.7 

EXP 
with 
nugget 

Original  
× 104 

0 0.0664 0.0954 - 6.5645 2011.7 2017.7 

# log L = residual log-likelihood 
§  AIC = Akaike Information Criterion 
$ POW = power model, EXP = exponential model 

 
Example 3: We here consider several two-dimensional models that impose an anisotropic 

variance-covariance structure on the plot errors within replicates arranged as a regular grid 
of r rows and c columns (Gilmour et al. 1997). These two-dimensional models are extensions 
of the basic AR(1) model (5). To keep the notation simple, we consider a single replicate. Let 
eij represent the error in the i-th row and j-th column of a replicate and assume that these are 

collected into a vector ( )T

rcc eeee ,....,,,... 21111=e . 
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A separable two-dimensional AR(1) model for var(e) may be defined as ( )cr ΩΩΩΩΩΩΩΩ ⊗2

sσ , 

where ( ){ }iid

r
r ′= ,ρrΩΩΩΩ , ( ){ }jjd

c
c ′= ,ρcΩΩΩΩ , ⊗ denotes the Kronecker (direct) product operator, and 

( ) iiiidr
′−=′,  ( )[ ]jjjjd c

′−=′,  is the distance between the i-th and i′ -th row (j-th and j′ -

th column). The nugget can be represented as ( )cr ΙΙΙΙΙΙΙΙ ⊗2

sσ , where rΙΙΙΙ  and cΙΙΙΙ  are r- and c-

dimensional identity matrices. Random row and column effects can be modelled by 

introducing the components ( )cr J⊗ΙΙΙΙ2

rσ  and ( )cr ΙΙΙΙ⊗J
2

cσ , respectively, in the structure for 

var(y), where y denotes the observed data vector for a replicate. For further details on this 
model see Gilmour et al. (1997) and Piepho and Williams (2010). 

We fitted different models involving some or all of the four components just described 
(Table 9). In addition to the two-dimensional AR(1) model, we also fitted one-dimensional 
AR(1) models, either among plots along the same row, or among plots down the same 
column. Each model had a fixed effect for varieties and for replicates.  

The best-fitting model according to AIC was the one containing all random components, 

i.e., row and column effects, the AR(1) ⊗ AR(1) spatial component, and a nugget (Table 9). 

The autocorrelation down the columns was very high ( 9863.0ˆ =rρ ), while that along the 

rows was relatively weak ( 4117.0ˆ =cρ ). At the same time, the column variance 2

cσ  

converged to zero, which shows that there is a confounding between the column component 

of the spatial model ( rρ ) and the column effect. The nugget variance took up a considerable 

part of the plot-to-plot variation ( 1490ˆ 2 =σ ), compared to the spatial variance 

( 13918ˆ 2 =sσ ). When the nugget was dropped from the model, the autocorrelations were 

markedly reduced ( 4332.0ˆ =rρ , 1963.0ˆ =cρ ), likely because the model was now forced to 

take up the nugget component into the spatial part of the model. At the same time, because 
of the much reduced correlation in the spatial components, the column variance was not 

zero, but took on a very large value ( 11707ˆ 2 =cσ ), comparable in magnitude to the estimate 

when the spatial model component was dropped altogether. 
The same behaviour as with the two-dimensional AR(1) model was observed when the 

correlation along the rows was dropped from the model. Again, the column variance was 
estimated to be zero. There were convergence problems with this model, likely due to the 
confounding of spatial model and column effects. These could only be resolved by fixing the 
column variance to zero (Table 9). When this was not done, the column variance came close 
to zero before the REML algorithm aborted without having reached the maximum of the 
residual likelihood.  

We also fitted a model that had a spatial correlation only along the rows, but not along 
the columns. Similar to the case of the two-dimensional model, the correlation was quite low 

( 1226.0ˆ =cρ ). In fact, the correlation was so low that the fitted covariance was virtually zero 

at lag 2 or larger along the rows, corresponding to a confounding with the nugget effect. 

Note that the estimated nugget variance is very tiny here ( 2ˆ 2 =σ ), whereas the spatial 

component takes up most of the plot variance ( 2507ˆ 2 =sσ ). This model also had 

convergence problems, again likely due to the confounding problem, with the final Hessian 
at convergence being non-positive definite.  

Piepho and Williams (2010) fitted the one-dimensional linear variance (LV) model (12) 

and several of its two-dimensional extensions to the same data as used in this example. The 

LV models yielded similar fits as the corresponding one- and two-dimensional AR(1) 

models; convergence was swift with all LV models. 
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Table 9. Parameter estimates and likelihood criteria for different models fitted to wheat data 
of Gilmour et al. (1997) (Example 3). 

Model Parameters Likelihood criteria 

Nugget Row 
effect 

Column 
effect 

Spatial component 2σ  
2

rσ  
2

cσ  
2

sσ  rρ  cρ  −2 log L# AIC& 

√ √ √  2391 843 12225 - - - 2574.2 2580.2 

√    13359 - - - - - 2854.6 2856.6 

√   AR(1) ⊗ AR(1) - - - 14721 0.8771 0.3021 2595.0 2601.0 

 √ √ AR(1) ⊗ AR(1) - 382 11707 3052 0.4332 0.1963 2555.0 2565.0 

√ √ √ AR(1) ⊗ AR(1) 1490 460 0 13918 0.9863 0.4117 2538.4 2548.4 

√ √ √ AR(1) down 
columns only 

2 739 12177 2507 - 0.1226 2573.3§ 2583.3 

√ √ √ AR(1) down rows 
only 

1436 564 $0 11870 0.9854 - 2542.4 2550.4 

§ Final Hessian not positive definite 
$ This variance component had to be fixed to zero in order to achieve convergence. When it was not fixed, the 
value of this variance was also zero when the REML-algorithm aborted 
# Residual likelihood (REML) 
& AIC = Akaike Information Criterion 

DISCUSSION AND CONCLUSION 

We investigated some of the numerical problems that may arise when fitting power and 
AR(1) models in randomized trials. We also considered some options for achieving 
convergence to a proper solution of REML-based procedures when default settings fail. The 
key problem is that the spatial component may be confounded with either the nugget 
variance or with random effects for experimental units such as blocks (in the case of 
randomized experiments with a single observation per plot) and plots (in the case of 
randomized experiments with repeated and spatially referenced measurements taken on the 
same plot). We showed that care is needed in interpreting the individual parameter 
estimates. Often, they can create the impression that spatial correlation is substantial whereas 
randomization-based effects for blocks and independent residual error are small. But the 
confounding problems elucidated in this paper mean that there is interplay between 
estimates of different parameters of the model and that a large autocorrelation estimate may 
in reality be due to a large variance of block effects, and vice versa. Similarly, a small 
autocorrelation estimate associated with a large spatial variance can, in fact, be confounded 
with the nugget variance, and the decay of correlation with spatial distance may be so fast 
that the fitted pairwise residual correlation within blocks is negligible for most pairs of plots. 
Thus, looking at the spatial variance estimate alone can be misleading. It is perhaps best to 
avoid strong interpretations of individual parameter estimates in isolation. Instead, the focus 
should be laid on the whole fitted variance-covariance structure for the data.  

In randomized field trials, it is advisable to employ randomization-based models (Nelder 
1965) with simple random effects. This can be taken as a point of departure for more refined 
modelling involving spatial add-on components. Such models can also serve as a fall-back 
option when spatial models turn out to be difficult to fit or to provide no improvement 
(Piepho and Williams 2010). We recommend against the common practice of fitting a purely 
spatial model with no effects for blocks when the design involved blocking. There is some 
danger that spatial correlation is erroneously reported as high when, in fact, it is low if 
blocks are fitted to reflect the randomization layout. Such problems can be avoided by 
starting the modelling process with a randomization-based model and considering spatial 
covariance merely as an optional add-on component. 
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In this paper, we have used one particular REML package (the MIXED procedure of 
SAS). To some extent numerical problems with statistical procedures are always software-
specific. Because of differences in implementation of iterative procedures for the REML 
algorithm, other software can yield different solutions, especially when convergence is 
difficult to achieve. It was not our intention here to compare different mixed model 
packages. In our experience, however, the problems with AR(1) and power models are 
similar with most packages, despite some differences in convergence behaviour for the same 
dataset. This largely results from the confounding problem when 0→ρ  or 1→ρ , which is 

an inherent property of the model itself rather than of the particular package used. We have 
considered options to deal with these problems and illustrated them using three examples. 
Re-scaling of the spatial coordinates or a re-parameterization of the AR(1) model as an 
exponential model can be recommended to help the model converge. Which of these options 
may work in a given situation much depends on the dataset. The LV model is a viable 
alternative to non-linear spatial models such as AR(1), and in our experience it usually has 
good convergence behaviour. So we suggest to routinely consider this model when exploring 
competing spatial add-on components to randomization-based models.  
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