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ABSTRACT 
Missing values for some genotype-environment combinations are commonly encountered in multi-
environment trials. The recommended methodology for analyzing such unbalanced data combines the 
Expectation-Maximization (EM) algorithm with the additive main effects and multiplicative interaction 
(AMMI) model. Recently, however, four imputation algorithms based on the Singular Value 
Decomposition of a matrix (SVD) have been reported in the literature (Biplot imputation, EM+SVD, 
GabrielEigen imputation, and distribution free multiple imputation - DFMI). These algorithms all fill in 
the missing values, thereby removing the lack of balance in the original data and permitting simpler 
standard analyses to be performed. The aim of this paper is to compare these four algorithms with the 
gold standard EM-AMMI. To do this, we report the results of a simulation study based on three complete 
sets of real data (eucalyptus, sugar cane and beans) for various imputation percentages. The 
methodologies were compared using the normalised root mean squared error, the Procrustes similarity 
statistic and the Spearman correlation coefficient. The conclusion is that imputation using the EM 
algorithm plus SVD provides competitive results to those obtained with the gold standard. It is also an 
excellent alternative to imputation with an additive model, which in practice ignores the genotype-by-
environment interaction and therefore may not be appropriate in some cases. 

Key Words: AMMI; genotype ×  environment interaction; imputation; missing values; singular value 
decomposition. 
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INTRODUCTION 

In plant breeding, multi-environment trials are important for testing both general and 

specific adaptations of cultivars. A cultivar developed in different environments will show 

significant fluctuations of performance in production relative to other cultivars. These 

changes are influenced by different environmental conditions and are referred to as 

genotype-by-environment interaction, or G× E (Arciniegas-Alarcón et al. 2013). 

Often, multi-environment experiments are unbalanced because several genotypes are not 

tested in some environments. Various methodologies have been proposed in order to solve 

this lack of balance caused by missing values; a useful list of references about this topic is 

available in Arciniegas-Alarcón et al. (2011, 2013). One of the first proposals was made by 

Freeman (1975), who suggested imputing the missing values in an iterative way by 

minimizing the residual sum of squares and then doing the G×E interaction analysis, 

reducing the degrees of freedom by the number of missing values. Gauch and Zobel (1990) 

developed this approach, doing the imputation by using the EM algorithm and 

incorporating the additive main effects and multiplicative interaction (AMMI) model; this is 

now known as the EM-AMMI approach. Alternative versions of this procedure using cluster 

analysis were described in Godfrey et al. (2002) and Godfrey (2004). Raju (2002) treated 

environments as random effects in the EM-AMMI algorithm, and suggested a robust statistic 

for the missing values in the stability analysis. Another option is to make the imputation in 

incomplete two-way tables using linear functions of rows (or columns) as proposed by 

Mandel (1993). Other methods for handling missing values in G×E experiments that showed 

good results were developed by Denis (1991), Caliński et al. (1992) and Denis and Baril 

(1992). They found that using imputations through alternating least squares with bilinear 

interaction models or AMMI estimates based on robust sub-models can give results as good 

as those found with the EM algorithm. A different approximation is to work with incomplete 

data under a mixed model structure with estimates based on maximum likelihood (Kang et 

al. 2004), but this approach can involve multiple steps and complicated procedures (Yan 

2013). Other studies that consider lack of balance in multi-environment experiments are the 

stability analysis by Raju and Bathia (2003) and Raju et al. (2006, 2009). Finally, Pereira et al. 

(2007) and Rodrigues et al. (2011) assessed the robustness of joint regression analysis and 

AMMI models without the use of data imputation. 

Recently, Bergamo et al. (2008), Perry (2009a), Arciniegas-Alarcón et al. (2010) and Yan 

(2013) described imputation systems that involve the Singular Value Decomposition (SVD) 

of a matrix, and therefore can be applied in any incomplete multi-environment experiments. 

So, the aim of this paper is to compare these four recent methods (henceforth denoted Biplot 

imputation, EM-SVD, GabrielEigen imputation and distribution free multiple imputation - 

DFMI) using as gold standard methodology, that is, the classic EM-AMMI algorithm 

proposed by Gauch and Zobel (1990). 

MATERIALS AND METHODS 

IMPUTATION METHODS 
EM-AMMI: We first briefly present the AMMI model (Gauch 1988, 1992) for complete 

experiments. The usual two-way ANOVA model for analysing data from genotype-by-

environment trials is given by ( ) ijijjiij eabbay ++++= µ , i = 1,...,n;  j = 1,...,p  
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where µ , ia , jb , ( )ijab  and ije  are, respectively, the grand mean, the genotypic and 

environmental main effects, the genotype-by-environment interaction, and the error term 

associated with the i-th genotype and the j-th location. It is assumed that all effects except the 

error are fixed. The AMMI model further considers the interactions as a sum of 

multiplicative terms, so that the model is written as 

ij

ji

jlilljiij ebay ++++= ∑
,

βαθµ .  

The terms lθ , ilα  and jlβ  ( ),...,2,1=l   can be estimated from the SVD of the interaction 

matrix: lθ  is estimated by l -th singular value of the SVD, while ilα  and jlβ  are estimated by 

the genotypic and environmental scores corresponding to lθ . Depending on the number of 

multiplicative terms that have been included, these models can be called AMMI0, AMMI1, 

etc. 

In incomplete trials, an iterative scheme built round the above procedure is used to 

obtain AMMI imputations from the EM algorithm. The additive parameters are initially set 

by computing the grand mean, genotype means and environment means obtained from the 

observed data. The residuals for the observed cells are initialized as the cell mean minus the 

genotype mean minus the environment mean plus the grand mean, and interactions for the 

missing positions are initially set to zero. The initial multiplicative parameters are obtained 

from the SVD of this matrix of residuals, and the missing values are filled by the appropriate 

AMMI estimates. In subsequent iterations, the usual AMMI procedure is applied to the 

completed matrix and the missing values are updated by the corresponding AMMI 

estimates. Iterations are stopped when changes in successive iterations become 'negligible' 

(see below).  

Depending on the number of multiplicative terms employed, the imputation method 

may be referred to as EM-AMMI0, EM-AMMI1, etc. (Gauch and Zobel 1990). The studies of 

Caliński et al. (1992), Piepho (1995), Arciniegas-Alarcón and Dias (2009) and Paderewski and 

Rodrigues (2014) showed that the best results for imputation with AMMI models are given 

by including at most one multiplicative component, for which reason our study will consider 

only the EM-AMMI0 and EM-AMMI1 methods. 

It is worth pointing out that the analysis model will not always be the same as the 

imputation model. The number of components selected for an AMMI-like model analysis 

must always depend on some tests, and it is common to use the RMSPD statistic for these. 

However, in this article AMMI will not be assessed as an analysis model but will be 

evaluated merely as an imputation model, and Arciniegas Alarcón et al. (2011) found that 

imputation errors associated with AMMI models increase as the number of multiplicative 

components increases. 

Biplot imputation: Recently, Yan (2013) described the following imputation method, using 

the fact that SVD forms the basis of biplot analysis (Gabriel, 1971; 2002). The method 

basically consists of substituting the missing values initially by arbitrary values in order to 

obtain a completed matrix, and then computing the SVD using only two components. This 

method is now presented more formally. 
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Biplot step 1. Consider a n× p matrix X with elements xij (i=1,...,n; j=1,...,p), where missing 

entries are denoted by aus

ijx . Initially, these missing values are imputed by their respective 

columns means, thereby providing a completed matrix X. 

Biplot step 2. The columns of completed matrix X are standardised, mean-centering by 

subtracting mj and dividing the result by sj (where mj and sj represent the mean and standard 

deviation of the j-th column). Denoting the standardised elements by pij, the matrix with 

elements pij will be denoted by P.  

Biplot step 3: The SVD of the P matrix is calculated. Considering the first two principal 

components, we have  

( )
∑

=

+=
−

=
2

1k

ijjkikk

j

jij

ij
s

mx
p εγαλ ,  

with singular values kλ , eigenvectors for the rows ikα  and eigenvectors for the columns jkγ  

for each of the k PC´s. ijε is the error for the row i in the column j. Removing this latter error 

term, the pij values may be updated, obtaining a new matrix called P(2) with elements ( )2

ijp . 

Biplot step 4: All the elements ( )2

ijp  in P(2) are returned to their original scale, 

( ) ( )22
ˆ ijjjij psmx += , thus obtaining a new X(2)(n× p) matrix. The missing elements aus

ijx  in the 

original matrix X are imputed by the corresponding values ( )2
ˆijx  from X(2). 

Biplot step 5: The process is then iterated (back to Biplot step 2) until stability is achieved in 

the imputations. For example, iterations can be continued until the difference between 

predicted values in the current iteration and those in the previous one, across all missing 

values, is less than some pre-specified small value. Formally this can be expressed as 

continuing until 01.0<
y

d
(say), where 
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.  

Here na is the total number of missing values in the matrix X, ix  is the predicted value for 

the i-th missing cell in the current iteration, A

ix  is the predicted value for the i-th missing cell 

in the previous iteration, ijy  is the observed value (not missing) in the i-th row and j-th 

column, and N is the total number of observed values.    

EM-SVD: Perry (2009a) presents the following imputation method that combines the EM 

algorithm with SVD. This method replaces the missing values of a G× E matrix initially by 

arbitrary values to obtain a completed matrix, and a SVD is then computed iteratively on this 

matrix. At the end of the process, when the iterations reach stability, a matrix containing the 

imputations for the missing values is obtained. We now present the method more formally. 

 Consider the n× p matrix A with elements Aij (i=1,...,n; j=1,...,p), some of which are missing. 

EM-SVD step 1: Let ( ){ }missingt isn' :, ijAjiI = , the set of all the observed values. 

EM-SVD step 2: For pj ≤≤1  let jµ  be the mean of the non-missing values in column j of 

A; set jµ to 0 if all of the entries in column j are missing. 



Communicat ions in  B iometry and Crop Sc ience ,  9  (2)  

 

58

EM-SVD step 3: Define A(0) by  

( )
( )





 ∈

=
otherwise 

 if 
0

j

ij

ij

Ii,jA
A

µ
 

EM-SVD step 4: Initialize the iteration count, 0←N . 

EM-SVD step 5: (Maximization) Compute the SVD: ( ) ( ) ( ) ( )∑
=

=
p

i

TN

i

N

i

N

i

N
d

1

vuA ; let ( )N

kA  denote 

the SVD truncated to k terms: ( ) ( ) ( ) ( )∑
=

=
k
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EM-SVD step 6: (Expectation) Define the n× p matrix ( )1+N
A  as 

( )
( )

( )




 ∈

=+

otherwise 

 if 

,

1

N

ijk

ijN

ij
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EM-SVD step 7: Set ( ) ( ) 2

,IF

N

k

N
RSS AA −= . If ( ) ( )1−− NN

RSSRSS  is less than some pre-

specified small value, then stop and output ( )N

kA , which contains the imputed missing 

values. Otherwise, increment 1+← NN  and return to EM-SVD step 5. 

 

GabrielEigen imputation: Arciniegas-Alarcón et al. (2010) proposed the following 

imputation method that combines regression and lower-rank approximation using SVD. This 

method initially replaces the missing cells by arbitrary values, and subsequently the 

imputations are refined through an iterative scheme that defines a partition of the matrix for 

each missing value in turn and uses a linear regression of columns (or rows) to obtain the 

new imputation. In this regression the design matrix is approximated by a matrix of lower 

rank using the SVD. The algorithm is now presented more formally.  

Consider the n×p matrix X with elements xij (i=1,...,n; j=1,...,p), some of which are missing. 

Note that this process requires n ≥ p , and if this is not the case then the matrix X should first 

be transposed. 

GabrielEigen step 1: The missing values are imputed initially by their respective column 

means, giving a completed matrix X. 

 GabrielEigen step 2: The columns are standardised, mean-centering by subtracting mj and 

dividing the result by sj (where mj and sj represent the mean and the standard deviation of 

the j-th column). 

GabrielEigen step 3: Using the standardised matrix, define the following partition 









=

•

•

111

1

Xx

x
X

T

ijx
,  

where the missing value in position (i,j) is always in position (1,1) of the defined partition. 

For each missing value xij the components from the considered partition will be different, 

and this partition is obtained through elementary operations on the rows and columns of X.  
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Replace the submatrix X11 by its rank m approximation using the singular value 

decomposition (SVD): ( ) ( )
T

m

k

T

kkk d UDVvuX ==∑
=1

11 , where [ ]muuuU ,...,, 21= , 

[ ]mvvvV ,...,, 21= , ( )mdddiag ,...,1=D  and { }1,1min −−≤ pnm . The imputation of xij is 

given by ( )
1

1

1 •
−

•= xUVDx
TTm

ijx   

GabrielEigen step 4: The imputation process is governed by the value of m, and it is 

suggested that m is chosen to be the smallest value for which 

{ } 75.0
1,1min

1

2

1

2

≈

∑

∑
−−

=

=

pn

k

k

m

k

k

d

d

. 

GabrielEigen step 5: Finally, the imputed values must be returned to their original scale, 
( )m

ijjjij xsmx ˆ+= , replacing them in the matrix X. Then the process is iterated (back to 

GabrielEigen step2) until stability is achieved in the imputations.  

Distribution free multiple imputation (DFMI): The distribution free multiple 

imputation (DFMI) method proposed by Bergamo et al. (2008) is an iterative scheme that 

uses the SVD of a matrix to predict missing values in a n×p matrix Y. As with the previous 

method, this method requires n ≥ p so if n < p the matrix should first be transposed. Consider 

first just one missing value yij in Y. Then, the i-th row from Y is deleted and the SVD for the 

(n-1)×p resulting matrix ( )i−
Y  is calculated, where ( ) Ti

VDUY =− , ( )shu=U , ( )shv=V , 

( )pdd ,...,1=D . The next step is to delete the j-th column from Y and obtain the SVD for the 

n×(p-1) matrix ( )j−Y , where ( )
T

j VDUY
~~~

=− , ( )shu~
~

=U , ( )shv~
~ =V , ( )

11

~
,...,

~~
−= pddD . The 

matrices U , V , U
~

 and V
~

 are orthonormal, D
~

 and D  are diagonal matrices. Now, 

combining the two SVDs, ( )i−
Y  and ( )j−Y , the imputed value is given by 

( )( )∑
=

−
=

H

h

a
hjh

a

hihij dvduy
1

1~~ˆ , where { }1,1min −−= pnH  and a is the weight in the interval [0,1] 

given to ( )j−Y . Specification of a automatically determines the weight for ( )i−
Y . For example, 

a weight of 40% for ( )j−Y  requires a=0.4 and the weight for ( )i−
Y  will be 60% or 1–a=0.6. 

Bergamo et al. (2008) affirm that 5 imputations for each missing value is sufficient to 

determine the variability among imputations, and for this reason suggest using weights of 

40%, 45%, 50%, 55% and 60% for ( )j−Y , namely, a=0.4, 0.45, 0.50, 0.55 and 0.60. Each value of 

a will provide a different imputation. 

For more than one missing value, an iterative scheme is required as follows. Initially all 

missing values are replaced by their respective column means, giving a completed matrix Y, 

and then the columns are standardised by subtracting jm  from each element and dividing 

the result by js  (where jm and js  represent the mean and the standard deviation of the j-th 

column calculated only from the observed values). Using the standardised matrix, the 

imputation for each missing value is recalculated using the expression for ijŷ . For the 

calculations of each estimate we need ( )i−
Y  and ( )j−Y , which are also standardised. Finally, 
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the matrix Y is returned to its original scale, ijjjij ysmy ˆ+= . The process is iterated until 

stability is achieved in the imputations. In all our analyses the mean of the five imputations 

was used as the estimate of each missing value.   

Arciniegas-Alarcón and Dias (2009) showed that in some cases imputation with models 

AMMI0, AMMI1 and AMMI2 can provide better results than imputation with DFMI. For this 

reason, some modifications can be made to the components of the expression for ijŷ , taking 

into account the work of Caliński et al. (1999) and Bro et al. (2008). First, the DFMI is based 

on the cross-validation method development by Eastment and Krzanowski (1982), and the 

estimates ijŷ are biased because the matrices D
~

 and D  systematically underestimate D . On 

average, this bias can be eliminated by correcting D  by a factor of ( )1−nn  and D
~

 by a 

factor ( )1−pp  (Bro et al. 2008). Second, in the DFMI method, { }1,1min −−= pnH  in 

order to use the maximum amount of information available in the matrix, but Caliński et al. 

(1999) suggest that residual dispersion of the interaction measured by the eigenvalues is 

close to 75%. Taking this into account, the choice of H was modified to { }kwH ,min=  with w 

such that 
{ }

75.0
1,1min

1

2

1

2
≈







∑∑

−−

==

pn

h

h

w

h

h dd  and k such that 
{ }

75.0
~~
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1

2

1

2 ≈







∑∑

−−

==

pn

h

h

k

h

h dd .  

THE DATA  

In order to compare the imputation methods we considered three data sets, published in 

Lavoranti (2003, p. 91), Flores et al. (1998) and Santos (2008, p. 37). In each case the data were 

obtained from a randomized complete block design with replicates, and each reference 

provides full details of the corresponding design. 

The data in the matrix “Lavoranti” came from experiments conducted in seven 

environments, in the south and southeast regions of Brazil, for 20 Eucalyptus grandis 

progenies from Australia. This was a randomized block design, with 6 plants per plot and 10 

replicates in a space of dimension 3.0m by 2.0m. The studied variable was the mean tree 

height in meters (m). The data matrix has size 20×7.  

The second data set “Santos” is a 15×13 matrix, with 15 sugar cane varieties assessed in 

13 environments in Brazil. The experiment was conducted under the breeding program of 

RIDESA (Rede Interuniversitária para o Desenvolvimento do Setor Sucroenergético), where 

the studied variable was sugar cane yield (t/ha). 

The third data set “Flores” is a 15×12 matrix, with 15 faba bean varieties assessed in 12 

environments in Spain. The experiments were conducted by RAEA (Red Andaluza de 

Experimentación Agraria), and the studied variable was faba bean yield (kg/ha). 

In Table 1, we present results from a preliminary study about the choice of the number of 

multiplicative components (to explain the G×E interaction) of the AMMI model that can be 

used for each selected data set, over which a simulation study is described below. The 

method of cross-validation “leave-one-out” by eigenvector (Bro et al. 2008, Gauch 2013) was 

used to select each model, the best model being the one that has the lowest PRESS statistic. It 

can be seen that an appropriate model for the “Lavoranti” data matrix is AMMI2, an AMMI1 

model is appropriate for the data matrix “Santos” and an AMMI4 model for the “Flores” 

data. This preliminary study justifies the choice of data sets to evaluate imputation methods. 
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Table 1. Values of Predicted REsidual Sum of Squares (PRESS) using cross validation by 
eigenvector in choosing the AMMI model to explain the interaction in the original (complete) 
data matrices. 

 PRESS 

Model Lavoranti Flores Santos 

AMMI1 75.1109 113.4852 101.2898 

AMMI2 73.8176 125.1817 115.8897 

AMMI3 100.3585 119.7403 129.3862 

AMMI4 134.3914 108.7088 121.9672 

AMMI5 575.0878 141.2513 159.6933 

AMMI6 56146.3357 171.0122 146.1308 

AMMI7 133.0000 289.9653 177.4717 

AMMI8  718.3669 224.5685 

AMMI9  1297.3257 234.6328 

AMMI10  5204.1570 396.0781 

AMMI11  20406.6026 406.0652 

AMMI12  168.0000 119156.7004 
AMMI13     182.0000 

 

SIMULATION STUDY 

Each original data matrix (“Lavoranti”, “Flores”, “Santos”) was submitted to random 

deletion at three different percentages, namely 10%, 20%, and 40%. The process was repeated 

1000 times for each percentage of missing values, giving a total of 3000 different matrices 

with missing values. Altogether, therefore, there were 9000 incomplete data sets, and for 

each one the missing values were imputed with the imputation algorithms described above 

using computational code in R (R Core Team 2013). 

The random deletion process for a matrix X (n×p) was as follows. Random numbers 

between 0 and 1 were generated in R with the runif function. For a fixed r value ( )10 << r , if 

the ( )jpi + -th random number was lower than r, then the element in the ( )ji ,1+  position of 

the matrix was deleted ( )pjni ,,1 ;1,,1,0 KK =−= . The expected proportion of missing 

values in the matrix will be r (Krzanowski 1988). This technique was used with r = 0.1, 0.2 

and 0.4.  

For EM-SVD, the computational implementation “bcv” provided by Perry (2009b) in the 

R package was used, along with the function impute.svd, to make the imputations in a matrix 

with missing values. In the application of the EM-SVD algorithm, a prior choice is needed for 

each simulated incomplete matrix for the number of components k to use in the SVD. For this 

we used the function cv.SVDImpute from the “imputation” package by Wong (2013), which 

conducts cross-validation on the available information in the following way. From the matrix 

with observed values a random deletion is made of 30% of them, and then the EM-SVD 

imputation is conducted. Using the completed data, the root mean squared error (RMSE) is 

then computed for those data entries that were randomly deleted. This is repeated for a 

range of values of k, and the value of k with lowest RMSE is the one chosen to make the 

imputation. In this study, in each simulated incomplete matrix the cross-validation process 

was repeated 100 times and the selected k was the one that most often minimised the RMSE.  



Communicat ions in  B iometry and Crop Sc ience ,  9  (2)  

 

62

COMPARISON CRITERIA 
Three criteria were used in order to compare the true values with the results obtained in 

the simulations: the Procrustes statistic M2 (Krzanowski 2000), the normalised root mean 

squared error — NRMSE (Ching et al. 2010) and the Spearman correlation coefficient. 

For the first criterion, each completed data matrix (observed+imputed) Yimp was 

compared with the original matrix Xorig (before removing the data) using 

)2(2 TC

orig

C

orig

TC

orig

C

orig

TC

orig

C

origtraceM QYXYYXX −+= , where C

origX and C

origY  are mean 

centered matrices, and T
VUQ =  is the rotation matrix calculated from elements of the SVD 

of the matrix T
VUYX Σ=C

orig

TC

orig . The M2 statistic measures the difference between two 

configurations of points, so we look for the imputation method that minimises this 

difference.  

The second criterion used was 
( )

( )
orig

origimp

sd

mean
NRMSE

a

aa
2

−
= , where impa  and origa  are 

vectors containing the respective predicted and true values of the simulated missing 

observation and ( )
origsd a  is the standard deviation of the values contained in the vector origa . 

The best imputation method is the one with the lowest value of NRMSE. 

The last comparison criterion considered was the Spearman correlation coefficient 

(Sprent and Smeeton 2001). This non-parametric correlation coefficient was calculated 

between each missing value and its corresponding true value. The imputation algorithm 

with the highest correlation provides the best performance. The non-parametric measure was 

used in order to avoid distribution problems in the data, since the Pearson correlation 

coefficient is strongly dependent on the normal distribution of variables. 

RESULTS AND DISCUSSION 

“LAVORANTI” MATRIX 

Table 2 shows the NRMSE means and medians. The imputation methods maximising the 

criterion are Biplot and EM-AMMI1 for all the imputation percentages, so they are the 

poorest. The best imputation method is EM-SVD, with means of 0.2690, 0.2649 and 0.2774 for 

imputation rates of 10%, 20% and 40%, respectively. It can be seen that the GabrielEigen, 

DFMI and EM-AMMI0 algorithms obtain better results that the classical method that 

considers the AMMI1 model for imputation. So, according to NRMSE the most efficient 

method is EM-SVD, followed by EM-AMMI0, GabrielEigen, DFMI and last the EM-AMMI1 

and Biplot methods.  

Figure 1 shows the distributions of the Procrustes statistic M2 for the different imputation 

percentages. The lower the statistic, the better is the imputation algorithm. So the poorest 

algorithms according to this criterion are the Biplot and EM-AMMI1 methods with a right 

asymmetric distribution. The algorithms DFMI, GabrielEigen, EM-SVD and EM-AMMI0 

minimise the statistic and have comparable behaviour at 10% and 20% rates with 

approximately symmetric distributions. On the other hand, at 40% deletion the dispersions 

of DFMI and GabrielEigen increase, so the best algorithms at this percentage are EM-SVD 

and EM-AMMI0. 
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Table 2. NRMSE means and medians for the “Lavoranti” matrix 

Percentages of values deleted randomly 

 10% 20% 40% 

Method Mean Median Mean Median Mean Median 

Biplot 0.3782 0.3454 0.4197 0.4024 0.5326 0.5217 

DFMI 0.2870 0.2719 0.2774 0.2724 0.2881 0.2842 

GabrielEigen 0.2780 0.2648 0.2757 0.2705 0.2920 0.2870 

EM-SVD 0.2690 0.2552 0.2649 0.2617 0.2774 0.2756 

EM-AMMI0 0.2705 0.2591 0.2661 0.2629 0.2776 0.2768 
EM-AMMI1 0.4268 0.3993 0.4106 0.3918 0.4239 0.4103 

 
Additionally, the Friedman non-parametric test was used to investigate differences 

among the M2 values for the methods DFMI, GabrielEigen, EM-SVD and EM-AMMI0 at all 

the percentages. The tests were significant for all the cases (P<0.001), so the Wilcoxon test 

was subsequently used to make paired comparisons. Since the gold standard methodology 

was EM-AMMI, only the multiple comparisons that included the EM-AMMI0 method were 

considered. For 20% and 40% deletion the EM-AMMI0 method showed significant 

differences (P<0.001) with each of DFMI, GabrielEigen and EM-SVD. For 10% deletion no 

significant difference was found between EM-AMMI0 and EM-SVD. In summary, therefore, 

for M2 the imputation methods in decreasing order of efficiency are EM-AMMI0, EM-SVD, 

GabrielEigen, DFMI, EM-AMMI1 and in last place Biplot.  

Finally, the correlation coefficient distributions that were calculated in each simulated 

data set to compare the imputations with the real data are presented in Figure 2. The median 

of the correlations is high (> 0.85) for all the considered imputation systems, but the 

distributions with the highest dispersion are those of Biplot and EM-AMMI1. As the 

imputation percentage increases the lowest dispersion and highest median is obtained with 

the EM-SVD and EM-AMMI0 systems. According to the distributions, with 10% and 20% 

imputation any of the 4 systems DFMI, GabrielEigen, EM-SVD or EM-AMMI0 can be used, 

but if the missing values percentage is higher then EM-SVD and EM-AMMI0 give the best 

results.  

 

 
 

Figure 1. M2 with different imputation percentages for the “Lavoranti” matrix 
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Figure 2. Box plot of the correlation distribution between real and imputed data for the 
“Lavoranti” matrix for 10%, 20% and 40% of missing values 

 

“FLORES” MATRIX 

Table 3 shows the NRMSE means and medians. EM-AMMI1 and Biplot maximize the 

criterion for all the imputation percentages, and therefore, as for the “Lavoranti” matrix, 

these are the poorest algorithms. The best imputation algorithm according to this criterion is 

EM-SVD, with means of 0.3947, 0.3899 and 0.4034 for imputation of 10%, 20% and 40% 

respectively; GabrielEigen, DFMI and EM-AMMI0 have better results than the classic 

algorithm EM-AMMI1 at all imputation percentages. Note that for 10% and 20% missing 

values, GabrielEigen have a better performance than DFMI, but when the percentage 

increase to 40% the opposite is the case. Thus, when NRMSE is considered, for the “Flores” 

matrix there are three groups. The first one contains the most efficient algorithms, namely 

EM-SVD and EM-AMMI0. The second one consists of the least efficient algorithms, EM-

AMMI1 and Biplot, while the third one with the intermediate efficiency algorithms contains 

GabrielEigen and DFMI.  

 
Table 3. NRMSE means and medians for the “Flores” matrix 

Percentages of values deleted randomly 

 10% 20% 40% 

Method Mean Median Mean Median Mean Median 

Biplot 0.4837 0.4578 0.4781 0.4676 0.5695 0.5603 

DFMI 0.4628 0.4367 0.4571 0.4458 0.4624 0.4548 

GabrielEigen 0.4349 0.4090 0.4385 0.4251 0.4817 0.4734 

EM-SVD 0.3947 0.3839 0.3899 0.3846 0.4034 0.4004 

EM-AMMI0 0.3977 0.3810 0.3925 0.3858 0.4041 0.4036 
EM-AMMI1 0.9553 0.5812 1.0818 0.6038 1.3877 0.8204 

 
Using M2, the EM-AMMI1 method had a very large dispersion so is the poorest method, 

and is therefore excluded from the comparisons that use the Procrustes statistic. Figure 3 

presents the M2 statistic distribution for the different imputation percentages. The method 

that maximises M2 for all the considered percentages is Biplot while the methods that 
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minimise M2 for all percentages are EM-SVD and EM-AMMI0. These latter methods have 

approximately symmetric distributions and the least dispersion among the considered 

methods. Once again, DFMI and GabrielEigen methods have intermediate efficiency. To 

determine whether EM-SVD or EM-AMMI0 is better, the Wilcoxon non-parametric test was 

used, giving a non-significant result (P=0.060) for 10% deletion and significance (P<0.001) for 

the other two percentages. At 20% and 40% deletion, the smaller medians show that EM-

AMMI0 has the greatest similarity between the original matrix and the different matrices 

containing imputations. 

Finally, Figure 4 shows the correlation coefficient distributions that were calculated in 

each simulated data set between imputations and the corresponding real data. For all the 

percentages, the biggest median and the smallest dispersion were obtained with EM-SVD 

and EM-AMMI0, so these two systems are the best according to the Spearman correlation 

coefficient. As with NRMSE and M2, the poorest methods with the lowest correlations and 

high dispersion were EM-AMMI1 and Biplot while GabrielEigen and DFMI again exhibit 

intermediate efficiency. 

“SANTOS” MATRIX 
Table 4 shows the means and medians of NRMSE for the “Santos” matrix. In this case, 

the best imputation system is clearly EM-SVD because it minimises the statistic for all 

imputation percentages. Next comes EM-AMMI0, followed by GabrielEigen and DFMI. The 

poorest methods were Biplot and EM-AMMI1. As for both the “Flores” and “Lavoranti” 

matrices, all methods perform better than the system based on the AMMI1 model. 

 

Table 4. NRMSE means and medians for the “Santos” matrix 

Percentages of values deleted randomly 

 10% 20% 40% 

Method    Mean       Median    Mean       Median    Mean       Median 

Biplot 0.5858 0.5736 0.5724 0.5634 0.6065 0.6028 

DFMI 0.5296 0.5209 0.5048 0.4982 0.4850 0.4788 

GabrielEigen 0.4637 0.4520 0.4678 0.4602 0.4922 0.4843 

EM-SVD 0.4147 0.4075 0.4132 0.4096 0.4233 0.4209 

EM-AMMI0 0.4207 0.4100 0.4198 0.4184 0.4297 0.4261 
EM-AMMI1 0.6731 0.5350 0.7946 0.5690 1.0414 0.7440 

 

Turning next to the M2 criterion, the EM-AMMI1 algorithm again had very large 

dispersions, so it was not compared with the other five methods for this criterion. The M2 

distributions are presented in Figure 5. The poorest performance is shown by Biplot, 

maximising M2 as well as having the largest dispersion, while the methods with the best 

performance are EM-SVD and EM-AMMI0 with approximately symmetric distributions. 

GabrielEigen and DFMI methods again performed better than Biplot, but poorer than EM-

SVD and EM-AMMI0.  

As was done for the “Flores” data, a Wilcoxon test was conducted between EM-SVD and 

EM-AMMI0, resulting in a significant difference (P<0.001) for 10% and 20% deletion rates, 

but not for 40% deletion (P=0.074). Comparing the M2 median values, the smallest ones were 

obtained with EM-SVD at all percentage rates. 
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Figure 3. M2 with different imputation percentages for the “Flores” matrix 

 

 

 

Figure 4. Box plot of the correlation distribution between real and imputed data for the 
“Flores” matrix for 10%, 20% and 40% of missing values 
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Figure 5. M2 with different imputation percentages for the “Santos” matrix 
 

 

Figure 6. Box plot of the correlation distribution between real and imputed data for the 
“Santos” matrix for 10%, 20% and 40% of missing values 

 

Figure 6 presents the correlation coefficient distributions. The best performers were EM-

SVD and EM-AMMI0 which had the maximum correlation at all the imputation percentages, 

approximately symmetric distributions, and the lowest dispersions with high medians 

(>0.88). The algorithm with the highest dispersion was EM-AMMI1, while the GabrielEigen 

and DFMI algorithms were better than Biplot and EM-AMMI1 but poorer than EM-SVD and 

EM-AMMI0.  

CONCLUSIONS 

The results reported here from three multi-environmental data matrices provide some 

guidelines for future research and analysis about missing values in such trials. The methods 

DFMI, EM-SVD and GabrielEigen recently presented in the literature showed better 

performances than the algorithm EM-AMMI1, which belongs to the AMMI family of models 

proposed by Gauch and Zobel (1990). While in previous studies the AMMI1 model 
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outperformed DFMI (Arciniegas-Alarcón and Dias, 2009), the modifications to the latter 

proposed in this paper led to DFMI having better results than EM-AMMI1 in all cases.   

According to the NRMSE statistic, the EM-SVD algorithm in general outperforms the 

other methods that use SVD, which is of interest if the principal aim of the researcher is to 

obtain estimates of missing G× E combinations. While some studies, such as those by 

Caliński (1992), Denis and Baril (1992), Piepho (1995) and Arciniegas-Alarcón et al. (2011), 

showed that the additive model was both simple and effective for solving the unbalance 

problem, the NRMSE results of the present study suggest that EM-SVD always outperforms 

EM-AMMI0, a method that is based on that model. However, when using the Procrustes 

criterion the situation changes and the greatest similarity between the original matrix and the 

matrices containing imputations is shown by EM-AMMI0, followed by EM-SVD.  

Overall, therefore, considering jointly the three criteria, NRMSE, M2 and Spearman 

correlation between original observations and the corresponding imputations, the most 

efficient methods are EM-SVD and EM-AMMI0 while the least efficient ones are Biplot and 

EM-AMMI1. The GabrielEigen and DFMI methods consistently lie intermediately between 

these two pairs. For 10% and 20% of missing values, GabrielEigen is better than DFMI, but 

when the percentage increases to 40% then DFMI is preferable. Moreover, DFMI has a 

characteristic exhibited by none of the other presented methods: it is the only method that 

provides a variance estimate among the imputations, enabling the uncertainty about the real 

values to be gauged.  

It is important to remember that the analysis model does not have to be the same as the 

imputation model. For example, in the initial cross-validation study (Table 1) on the original 

“Santos” matrix the analysis model chosen to explain the interaction was AMMI1, so it might 

be tempting to think that in case of missing values the best imputation model would be EM-

AMMI1. This does not have to be the case, because the missing observations change the 

structure of the interaction and, moreover, imputation errors associated with AMMI models 

increase as the number of multiplicative components increases. Thus, the results of this study 

suggest that the best approach is to impute with the EM-SVD system and then make an 

interaction analysis using AMMI models.  

Further research about incomplete G×E experiments is needed and could involve, for 

example, other comparison criteria for the algorithms, missing value mechanisms other than 

missing completely at random (MCAR) as defined by Little and Rubin (2002) and 

Paderewski and Rodrigues (2014), or other gold standard methodologies, such as the mixed 

model (Piepho, 1998). Until such research provides contradictory evidence, it appears that 

EM-SVD is a very competitive alternative to AMMI models and especially so in relation to 

the additive model, which has the disadvantage of ignoring the interaction – a feature that in 

some situations can be inappropriate. 
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